1,387 research outputs found
Weighted decomposition in high-performance lattice-Boltzmann simulations: Are some lattice sites more equal than others?
Obtaining a good load balance is a significant challenge in scaling up lattice-Boltzmann simulations of realistic sparse problems to the exascale. Here we analyze the effect of weighted decomposition on the performance of the HemeLB lattice-Boltzmann simulation environment, when applied to sparse domains. Prior to domain decomposition, we assign wall and in/outlet sites with increased weights which reflect their increased computational cost. We combine our weighted decomposition with a second optimization, which is to sort the lattice sites according to a space filling curve. We tested these strategies on a sparse bifurcation and very sparse aneurysm geometry, and find that using weights reduces calculation load imbalance by up to 85 %, although the overall communication overhead is higher than some of our runs.This work has received funding from the CRESTA and MAPPER projects within the EC-FP7 (ICT-2011.9.13) under Grant Agreements nos. 287703 and 261507, and from EPSRC Grants EP/I017909/1 (www.2020science.net) and EP/I034602/1
Point-of-care screening for a current Hepatitis C virus infection: influence on uptake of a concomitant offer of HIV screening
Eliminating hepatitis C as a public health threat requires an improved understanding of how to increase testing uptake. We piloted point-of-care testing (POCT) for a current HCV infection in an inner-city Emergency Department (ED) and assessed the influence on uptake of offering concomitant screening for HIV. Over four months, all adults attending ED with minor injuries were first invited to complete an anonymous questionnaire then invited to test in alternating cycles offering HCV POCT or HCV+HIV POCT. Viral RNA was detected in finger-prick blood by GeneXpert. 814/859 (94.8%) questionnaires were returned and 324/814 (39.8%) tests were accepted, comprising 211 HCV tests and 113 HCV+HIV tests. Offering concomitant HIV screening reduced uptake after adjusting for age and previous HCV testing (odds ratio 0.51; 95% confidence interval [CI] 0.38–0.68; p < 0.001). HCV prevalence was 1/324 (0.31%; 95% CI 0.05–1.73); no participant tested positive for HIV. 167/297 (56.2%) POCT participants lived in the most deprived neighbourhoods in England. HCV RNA testing using finger-prick blood was technically feasible. Uptake was moderate and the offer of concomitant HIV screening showed a detrimental impact on acceptability in this low prevalence population. The findings should be confirmed in a variety of other community settings
Oscillatory surface rheotaxis of swimming E. coli bacteria
Bacterial contamination of biological conducts, catheters or water resources
is a major threat to public health and can be amplified by the ability of
bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation
with respect to flow gradients, often in complex and confined environments, are
still poorly understood. Here, we follow individual E. coli bacteria swimming
at surfaces under shear flow with two complementary experimental assays, based
on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a
theoretical model for their rheotactic motion. Three transitions are identified
with increasing shear rate: Above a first critical shear rate, bacteria shift
to swimming upstream. After a second threshold, we report the discovery of an
oscillatory rheotaxis. Beyond a third transition, we further observe
coexistence of rheotaxis along the positive and negative vorticity directions.
A full theoretical analysis explains these regimes and predicts the
corresponding critical shear rates. The predicted transitions as well as the
oscillation dynamics are in good agreement with experimental observations. Our
results shed new light on bacterial transport and reveal new strategies for
contamination prevention.Comment: 12 pages, 5 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Cellular Automata Applications in Shortest Path Problem
Cellular Automata (CAs) are computational models that can capture the
essential features of systems in which global behavior emerges from the
collective effect of simple components, which interact locally. During the last
decades, CAs have been extensively used for mimicking several natural processes
and systems to find fine solutions in many complex hard to solve computer
science and engineering problems. Among them, the shortest path problem is one
of the most pronounced and highly studied problems that scientists have been
trying to tackle by using a plethora of methodologies and even unconventional
approaches. The proposed solutions are mainly justified by their ability to
provide a correct solution in a better time complexity than the renowned
Dijkstra's algorithm. Although there is a wide variety regarding the
algorithmic complexity of the algorithms suggested, spanning from simplistic
graph traversal algorithms to complex nature inspired and bio-mimicking
algorithms, in this chapter we focus on the successful application of CAs to
shortest path problem as found in various diverse disciplines like computer
science, swarm robotics, computer networks, decision science and biomimicking
of biological organisms' behaviour. In particular, an introduction on the first
CA-based algorithm tackling the shortest path problem is provided in detail.
After the short presentation of shortest path algorithms arriving from the
relaxization of the CAs principles, the application of the CA-based shortest
path definition on the coordinated motion of swarm robotics is also introduced.
Moreover, the CA based application of shortest path finding in computer
networks is presented in brief. Finally, a CA that models exactly the behavior
of a biological organism, namely the Physarum's behavior, finding the
minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From
software to wetware. Springer, 201
Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity.
Published versio
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Systemic tuberculosis presenting with acute transient myopia: a case report
<p>Abstract</p> <p>Introduction</p> <p>Transient myopia has been reported to occur in a number of conditions, either ocular in origin or associated with an underlying systemic cause. We present a rare case of this abnormality occurring in the setting of systemic tuberculosis.</p> <p>Case presentation</p> <p>A 29-year-old Indian woman presented with sudden onset blurred distance vision and fever. Examination revealed visual acuity of counting fingers in both eyes improving to 6/9 with pinhole with N5 reading acuity. Anterior segment examination revealed narrow angles on gonioscopy. Posterior segments were normal. Systemic examination revealed a fluctuant mass in her left loin, aspiration of which yielded pus which was culture-positive for <it>Mycobacterium tuberculosis</it>. The Mantoux test elicited a strongly positive reaction. Chest X-ray and magnetic resonance imaging of the brain were unremarkable. Computed tomography scan and magnetic resonance imaging of the spine and abdomen revealed a large psoas abscess communicating with the loin mass. Two vertebrae were involved but not the spinal cord or canal.</p> <p>Conclusion</p> <p>Transient myopia is a rare presenting feature of systemic tuberculosis. A postulated mechanism in this patient is that development of a uveal effusion related to systemic tuberculosis caused anterior rotation of the iris-lens diaphragm, thereby inducing narrowing of the angle and acute myopia.</p
Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector
A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
- …
