257 research outputs found
MiR-RACE, a New Efficient Approach to Determine the Precise Sequences of Computationally Identified Trifoliate Orange (Poncirus trifoliata) MicroRNAs
BACKGROUND: Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs. METHODS: In this study, we report an efficient method to determine the precise sequences of computationally predicted microRNAs (miRNAs) that combines miRNA-enriched library preparation, two specific 5' and 3' miRNA RACE (miR-RACE) PCR reactions, and sequence-directed cloning, in which the most challenging step is the two specific gene specific primers designed for the two RACE reactions. miRNA-mediated mRNA cleavage by RLM-5' RACE and sequencing were carried out to validate the miRNAs detected. Real-time PCR was used to analyze the expression of each miRNA. RESULTS: The efficiency of this newly developed method was validated using nine trifoliate orange (Poncirus trifoliata) miRNAs predicted computationally. The miRNAs computationally identified were validated by miR-RACE and sequencing. Quantitative analysis showed that they have variable expression. Eight target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. CONCLUSION: The efficient and powerful approach developed herein can be successfully used to validate the sequences of miRNAs, especially the termini, which depict the complete miRNA sequence in the computationally predicted precursor
Sources of Variation in Physician Adherence with Clinical Guidelines: Results from a Factorial Experiment
BACKGROUND: Health services research has documented the magnitude of health care variations. Few studies focus on provider level sources of variation in clinical decision making-for example, which primary care providers are likely to follow clinical guidelines, with which types of patient. OBJECTIVES: To estimate: (1) the extent of primary care provider adherence to practice guidelines and the unconfounded influence of (2) patient attributes and (3) physician characteristics on adherence with clinical practice guidelines. DESIGN: In a factorial experiment, primary care providers were shown clinically authentic video vignettes with actors portrayed different “patients” with identical signs of coronary heart disease (CHD). Different types of providers were asked how they would manage the different “patients” with identical CHD symptoms. Measures were taken to protect external validity. RESULTS: Adherence to some guidelines is high (over 50% of physicians would follow a third of the recommended actions), yet there is low adherence to many of them (less than 20% would follow another third). Female patients are less likely than males to receive 4 of 5 types of physical examination (p < .03); older patients are less likely to be advised to stop smoking (p < .03). Race and SES of patients had no effect on provider adherence to guidelines. A physicians’ level of experience (age) appears to be important with certain patients. CONCLUSIONS: Physician adherence with guidelines varies with different types of “patient” and with the length of clinical experience. With this evidence it is possible to appropriately target interventions to reduce health care variations by improving physician adherence with clinical guidelines
Large-Scale Identification of Mirtrons in Arabidopsis and Rice
A new catalog of microRNA (miRNA) species called mirtrons has been discovered in animals recently, which originate from spliced introns of the gene transcripts. However, only one putative mirtron, osa-MIR1429, has been identified in rice (Oryza sativa). We employed a high-throughput sequencing (HTS) data- and structure-based approach to do a genome-wide search for the mirtron candidate in both Arabidopsis (Arabidopsis thaliana) and rice. Five and eighteen candidates were discovered in the two plants respectively. To investigate their biological roles, the targets of these mirtrons were predicted and validated based on degradome sequencing data. The result indicates that the mirtrons could guide target cleavages to exert their regulatory roles post-transcriptionally, which needs further experimental validation
New Insights into X-ray Binaries
X-ray binaries are excellent laboratories to study collapsed objects. On the
one hand, transient X-ray binaries contain the best examples of stellar-mass
black holes while persistent X-ray binaries mostly harbour accreting neutron
stars. The determination of stellar masses in persistent X-ray binaries is
usually hampered by the overwhelming luminosity of the X-ray heated accretion
disc. However, the discovery of high-excitation emission lines from the
irradiated companion star has opened new routes in the study of compact
objects. This paper presents novel techniques which exploits these irradiated
lines and summarises the dynamical masses obtained for the two populations of
collapsed stars: neutron stars and black holes.Comment: 12 pages, 5 figures, 2 tables, Invited review to plenary session in
"Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific
Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11
July, 2008. Edited by J. Gorgas, L. J. Goicoechea, J. I. Gonzalez-Serrano, J.
M. Dieg
Selective Optical Control of Synaptic Transmission in the Subcortical Visual Pathway by Activation of Viral Vector-Expressed Halorhodopsin
The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions
Identification and Characterization of NF-Y Transcription Factor Families in the Monocot Model Plant Brachypodium distachyon
BACKGROUND: Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium) with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. METHODOLOGY/PRINCIPAL FINDINGS: We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y). By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. CONCLUSIONS/SIGNIFICANCE: The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses
Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa
Creating symbolic cultures of consumption: an analysis of the content of sports wagering advertisements in Australia
Background: Since 2008, Australia has seen the rapid emergence of marketing for online and mobile sports wagering. Previous research from other areas of public health, such as tobacco and alcohol, has identified the range of appeal strategies these industries used to align their products with culturally valued symbols. However, there is very limited research that has investigated the tactics the sports wagering industry uses within marketing to influence the consumption of its products and services. Method: This study consisted of a mixed method interpretive content analysis of 85 sports wagering advertisements from 11 Australian and multinational wagering companies. Advertisements were identified via internet searches and industry websites. A coding framework was applied to investigate the extent and nature of symbolic appeal strategies within advertisements. Results: Ten major appeal strategies emerged from this analysis. These included sports fan rituals and behaviours; mateship; gender stereotypes; winning; social status; adventure, thrill and risk; happiness; sexualised imagery; power and control; and patriotism. Symbols relating to sports fan rituals and behaviours, and mateship, were the most common strategies used within the advertisements. Discussion/Conclusions: This research suggests that the appeal strategies used by the sports wagering industry are similar to those strategies adopted by other unhealthy commodity industries. With respect to gambling, analysis revealed that strategies are clearly targeted to young male sports fans. Researchers and public health practitioners should seek to better understand the impact of marketing on the normalisation of sports wagering for this audience segment, and implement strategies to prevent gambling harm
Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids
Phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), in particular during the early step of infection when bacilli encounter their host macrophages. However, their cellular and molecular mechanisms of action remain unknown. Using Mtb mutants deleted for genes involved in DIM biosynthesis, we demonstrated that DIM participate both in the receptor-dependent phagocytosis of Mtb and the prevention of phagosomal acidification. The effects of DIM required a state of the membrane fluidity as demonstrated by experiments conducted with cholesterol-depleting drugs that abolished the differences in phagocytosis efficiency and phagosome acidification observed between wild-type and mutant strains. The insertion of a new cholesterol-pyrene probe in living cells demonstrated that the polarity of the membrane hydrophobic core changed upon contact with Mtb whereas the lateral diffusion of cholesterol was unaffected. This effect was dependent on DIM and was consistent with the effect observed following DIM insertion in model membrane. Therefore, we propose that DIM control the invasion of macrophages by Mtb by targeting lipid organisation in the host membrane, thereby modifying its biophysical properties. The DIM-induced changes in lipid ordering favour the efficiency of receptor-mediated phagocytosis of Mtb and contribute to the control of phagosomal pH driving bacilli in a protective niche
- …
