31 research outputs found
Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell
Biopolymer composite cell walls maintain cell shape and resist forces in plants, fungi and
bacteria. Peptidoglycan, a crucial antibiotic target and immunomodulator, performs this role
in bacteria. The textbook structural model of peptidoglycan is a highly ordered, crystalline
material. Here we use atomic force microscopy (AFM) to image individual glycan chains in
peptidoglycan from Escherichia coli in unprecedented detail. We quantify and map the extent
to which chains are oriented in a similar direction (orientational order), showing it is much
less ordered than previously depicted. Combining AFM with size exclusion chromatography,
we reveal glycan chains up to 200 nm long. We show that altered cell shape is associated
with substantial changes in peptidoglycan biophysical properties. Glycans from E. coli in its
normal rod shape are long and circumferentially oriented, but when a spheroid shape is
induced (chemically or genetically) glycans become short and disordered
Sporulation, bacterial cell envelopes, and the origin of life
Electron cryotomography (ECT) enables the 3D reconstruction of intact cells in a near-native state. Images produced by ECT have led to the proposal that an ancient sporulation-like event gave rise to the second membrane in diderm bacteria. Tomograms of sporulating monoderm and diderm bacterial cells show how sporulation can lead to the generation of diderm cells. Tomograms of Gram-negative and Gram-positive cell walls and purified sacculi suggest that they are more closely related than previously thought and support the hypothesis that they share a common origin. Mapping the distribution of cell envelope architectures onto a recent phylogenetic tree of life indicates that the diderm cell plan, and therefore the sporulation-like event that gave rise to it, must be very ancient. One explanation for this model is that during the cataclysmic transitions of the early Earth, cellular evolution may have gone through a bottleneck in which only spores survived, which implies that the last bacterial common ancestor was a spore
Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells
Peptidoglycans provide bacterial cell walls with
mechanical strength. The spatial organization of peptidoglycan has previously been difficult
to study. Here, atomic force microscopy, together with cells carrying mutations in cell-wall
polysaccharides, has allowed an in-depth study of these molecules
Neuroregeneration in neurodegenerative disorders
<p>Abstract</p> <p>Background</p> <p>Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach.</p> <p>Discussion</p> <p>Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies.</p> <p>Summary</p> <p>In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.</p
Two distinct populations of doublecortin-positive cells in the perilesional zone of cortical infarcts
The neurobiology of infant maternal odor learning
Infant rats must learn to identify their mother's diet-dependent odor. Once learned, maternal odor controls pups' approach to the mother, their social behavior and nipple attachment. Here we present a review of the research from four different laboratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neural changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses supporting attachment to the caregiver
