12 research outputs found
SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression
Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9–GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors
Evaluation of the anti-angiogenic activity of saponins from Maesa lanceolata by different assays
Angiogenesis, in which a vascular network is established from pre-existing vessels, is a complex multistep process. Mechanisms underlying angiogenesis can be investigated using a variety of in vitro, ex vivo and in vivo approaches. Evaluation of several promising plants and plant metabolites, including terpenoids, revealed promising anti-angiogenic activity. Since the maesasaponins displayed anti-angiogenic activity in the chick chorioallantoic membrane (CAM) assay, their activity was further investigated in several test systems. The rat aorta ring assay was compared with the placental vein assay and then selected for the ex vivo investigation of the saponins. Besides their effect on the viability of HUVEC, the anti-angiogenic capacity of the compounds was also investigated in an in vivo zebrafish assay. The activity of the saponins in the viability assay was more pronounced than in the rat aorta ring assay and similar to the effect observed in the CAM assay. The use of different test systems, however, implies different results in the case of saponins
Targeting and tracing antigens in live cells with fluorescent nanobodies.
We fused the epitope-recognizing fragment of heavy-chain antibodies from Camelidae sp. with fluorescent proteins to generate fluorescent, antigen-binding nanobodies (chromobodies) that can be expressed in living cells. We demonstrate that chromobodies can recognize and trace antigens in different subcellular compartments throughout S phase and mitosis. Chromobodies should enable new functional studies, as potentially any antigenic structure can be targeted and traced in living cells in this fashion
Medication Possession Ratio Predicts Antiretroviral Regimens Persistence in Peru
OBJECTIVES: In developing nations, the use of operational parameters (OPs) in the prediction of clinical care represents a missed opportunity to enhance the care process. We modeled the impact of multiple measurements of antiretroviral treatment (ART) adherence on antiretroviral treatment outcomes in Peru. DESIGN AND METHODS: Retrospective cohort study including ART naïve, non-pregnant, adults initiating therapy at Hospital Nacional Cayetano Heredia, Lima-Peru (2006-2010). Three OPs were defined: 1) Medication possession ratio (MPR): days with antiretrovirals dispensed/days on first-line therapy; 2) Laboratory monitory constancy (LMC): proportion of 6 months intervals with ≥1 viral load or CD4 reported; 3) Clinic visit constancy (CVC): proportion of 6 months intervals with ≥1 clinic visit. Three multi-variable Cox proportional hazard (PH) models (one per OP) were fit for (1) time of first-line ART persistence and (2) time to second-line virologic failure. All models were adjusted for socio-demographic, clinical and laboratory variables. RESULTS: 856 patients were included in first-line persistence analyses, median age was 35.6 years [29.4-42.9] and most were male (624; 73%). In multivariable PH models, MPR (per 10% increase HR=0.66; 95%CI=0.61-0.71) and LMC (per 10% increase 0.83; 0.71-0.96) were associated with prolonged time on first-line therapies. Among 79 individuals included in time to second-line virologic failure analyses, MPR was the only OP independently associated with prolonged time to second-line virologic failure (per 10% increase 0.88; 0.77-0.99). CONCLUSIONS: The capture and utilization of program level parameters such as MPR can provide valuable insight into patient-level treatment outcomes
Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: a systematic review and meta-analysis
Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo
Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
