6,139 research outputs found

    Predicting polarization and nonlinear dielectric response of arbitrary perovskite superlattice sequences

    Full text link
    We carry out first-principles calculations of the nonlinear dielectric response of short-period ferroelectric superlattices. We compute and store not only the total polarization, but also the Wannier-based polarizations of individual atomic layers, as a function of electric displacement field, and use this information to construct a model capable of predicting the nonlinear dielectric response of an arbitrary superlattice sequence. We demonstrate the successful application of our approach to superlattices composed of SrTiO3_3, CaTiO3_3, and BaTiO3_3 layers.Comment: 5 pages, 4 figures, 2 table

    Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions

    Get PDF
    For the production of smart textiles the resistivity of prints and coatings with intrinsic conductive polymers is often too high and the performance properties not sufficient. The addition of metal components enhances many characteristics, however the choice of type of metal, morphology and application method influence results to great extend

    Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO3_3 (001) surface

    Full text link
    The c(2×\times2) reconstruction of (001) PbTiO3_3 surfaces is studied by means of first principles calculations for paraelectric (non-polar) and ferroelectric ([001] polarized) films. Analysis of the atomic displacements in the near-surface region shows how the surface modifies the antiferrodistortive (AFD) instability and its interaction with ferroelectric (FE) distortions. The effect of the surface is found to be termination dependent. The AFD instability is suppressed at the TiO2_2 termination while it is strongly enhanced, relative to the bulk, at the PbO termination resulting in a c(2x2) surface reconstruction which is in excellent agreement with experiments. We find that, in contrast to bulk PbTiO3_3, in-plane ferroelectricity at the PbO termination does not suppress the AFD instability. The AFD and the in-plane FE distortions are instead concurrently enhanced at the PbO termination. This leads to a novel surface phase with coexisting FE and AFD distortions which is not found in PbTiO3_3 bulk

    Effects of Vacancies on Properties of Relaxor Ferroelectrics: a First-Principles Study

    Full text link
    A first-principles-based model is developed to investigate the influence of lead vacancies on the properties of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3 (PSN). Lead vacancies generate large, inhomogeneous, electric fields that reduce barriers between energy minima for different polarization directions. This naturally explains why relaxors with significant lead vacancy concentrations have broadened dielectric peaks at lower temperatures, and why lead vacancies smear properties in the neighborhood of the ferroelectric transition in PSN. We also reconsider the conventional wisdom that lead vacancies reduce the magnitude of dielectric response.Comment: 11 pages, 1 figur

    Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films

    Full text link
    The ideal intrinsic barriers to domain switching in c-phase PbTiO_3 (PTO), PbZrO_3 (PZO), and PbZr_{1-x}Ti_xO_3 (PZT) are investigated via first-principles computational methods. The effects of epitaxial strain on the atomic structure, ferroelectric response, barrier to coherent domain reversal, domain-wall energy, and barrier to domain-wall translation are studied. It is found that PTO has a larger polarization, but smaller energy barrier to domain reversal, than PZO. Consequentially the idealized coercive field is over two times smaller in PTO than PZO. The Ti--O bond length is more sensitive to strain than the other bonds in the crystals. This results in the polarization and domain-wall energy in PTO having greater sensitivity to strain than in PZO. Two ordered phases of PZT are considered, the rock-salt structure and a (100) PTO/PZO superlattice. In these simple structures we find that the ferroelectric properties do not obey Vergard's law, but instead can be approximated as an average over individual 5-atom unit cells.Comment: 9 pages, 13 figure

    Enhancement of piezoelectricity in a mixed ferroelectric

    Full text link
    We use first-principles density-functional total energy and polarization calculations to calculate the piezoelectric tensor at zero temperature for both cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest piezoelectric coefficient for the tetragonal configuration is enhanced by a factor of about three with respect to that of the cubic configuration. This can be attributed to both the larger strain-induced motion of cations relative to anions and higher Born effective charges in the tetragonal case. A normal mode decomposition shows that both cation ordering and local relaxation weaken the ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure

    Giant direct magnetoelectric effect in strained multiferroic heterostructures

    Full text link
    The direct magnetoelectric (ME) effect mediated by lattice strains induced in a ferroelectric film by a ferromagnetic substrate is evaluated using first-principles-based calculations. To that end, the strain sensitivity of ferroelectric polarization and the film permittivity are calculated as a function of the in-plane biaxial strain for Pb(Zr0.52Ti0.48)O3 films under various depolarizing fields. It is found that the ME voltage coefficient varies nonmonotonically with this strain and may reach giant values exceeding 100 Vcm-1 Oe-1 over a strain range that can be controlled through the electrical boundary conditions.Comment: Accepted as a Rapid Communication by Phys.Rev.B (http://prb.aps.org/

    Piezoelectric control of the magnetic anisotropy via interface strain coupling in a composite multiferroic structure

    Full text link
    We investigate theoretically the magnetic dynamics in a ferroelectric/ferromagnetic heterostructure coupled via strain-mediated magnetoelectric interaction. We predict an electric field-induced magnetic switching in the plane perpendicular to the magneto-crystalline easy axis, and trace this effect back to the piezoelectric control of the magnetoelastic coupling. We also investigate the magnetic remanence and the electric coercivity
    corecore