6,139 research outputs found
Predicting polarization and nonlinear dielectric response of arbitrary perovskite superlattice sequences
We carry out first-principles calculations of the nonlinear dielectric
response of short-period ferroelectric superlattices. We compute and store not
only the total polarization, but also the Wannier-based polarizations of
individual atomic layers, as a function of electric displacement field, and use
this information to construct a model capable of predicting the nonlinear
dielectric response of an arbitrary superlattice sequence. We demonstrate the
successful application of our approach to superlattices composed of SrTiO,
CaTiO, and BaTiO layers.Comment: 5 pages, 4 figures, 2 table
Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions
For the production of smart textiles the resistivity of prints and coatings with intrinsic conductive polymers is often too high and the performance properties not sufficient. The addition of metal components enhances many characteristics, however the choice of type of metal, morphology and application method influence results to great extend
Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO (001) surface
The c(22) reconstruction of (001) PbTiO surfaces is studied by
means of first principles calculations for paraelectric (non-polar) and
ferroelectric ([001] polarized) films. Analysis of the atomic displacements in
the near-surface region shows how the surface modifies the antiferrodistortive
(AFD) instability and its interaction with ferroelectric (FE) distortions. The
effect of the surface is found to be termination dependent. The AFD instability
is suppressed at the TiO termination while it is strongly enhanced,
relative to the bulk, at the PbO termination resulting in a c(2x2) surface
reconstruction which is in excellent agreement with experiments. We find that,
in contrast to bulk PbTiO, in-plane ferroelectricity at the PbO termination
does not suppress the AFD instability. The AFD and the in-plane FE distortions
are instead concurrently enhanced at the PbO termination. This leads to a novel
surface phase with coexisting FE and AFD distortions which is not found in
PbTiO bulk
Effects of Vacancies on Properties of Relaxor Ferroelectrics: a First-Principles Study
A first-principles-based model is developed to investigate the influence of
lead vacancies on the properties of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3
(PSN). Lead vacancies generate large, inhomogeneous, electric fields that
reduce barriers between energy minima for different polarization directions.
This naturally explains why relaxors with significant lead vacancy
concentrations have broadened dielectric peaks at lower temperatures, and why
lead vacancies smear properties in the neighborhood of the ferroelectric
transition in PSN. We also reconsider the conventional wisdom that lead
vacancies reduce the magnitude of dielectric response.Comment: 11 pages, 1 figur
Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films
The ideal intrinsic barriers to domain switching in c-phase PbTiO_3 (PTO),
PbZrO_3 (PZO), and PbZr_{1-x}Ti_xO_3 (PZT) are investigated via
first-principles computational methods. The effects of epitaxial strain on the
atomic structure, ferroelectric response, barrier to coherent domain reversal,
domain-wall energy, and barrier to domain-wall translation are studied. It is
found that PTO has a larger polarization, but smaller energy barrier to domain
reversal, than PZO. Consequentially the idealized coercive field is over two
times smaller in PTO than PZO. The Ti--O bond length is more sensitive to
strain than the other bonds in the crystals. This results in the polarization
and domain-wall energy in PTO having greater sensitivity to strain than in PZO.
Two ordered phases of PZT are considered, the rock-salt structure and a (100)
PTO/PZO superlattice. In these simple structures we find that the ferroelectric
properties do not obey Vergard's law, but instead can be approximated as an
average over individual 5-atom unit cells.Comment: 9 pages, 13 figure
Enhancement of piezoelectricity in a mixed ferroelectric
We use first-principles density-functional total energy and polarization
calculations to calculate the piezoelectric tensor at zero temperature for both
cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest
piezoelectric coefficient for the tetragonal configuration is enhanced by a
factor of about three with respect to that of the cubic configuration. This can
be attributed to both the larger strain-induced motion of cations relative to
anions and higher Born effective charges in the tetragonal case. A normal mode
decomposition shows that both cation ordering and local relaxation weaken the
ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure
Giant direct magnetoelectric effect in strained multiferroic heterostructures
The direct magnetoelectric (ME) effect mediated by lattice strains induced in
a ferroelectric film by a ferromagnetic substrate is evaluated using
first-principles-based calculations. To that end, the strain sensitivity of
ferroelectric polarization and the film permittivity are calculated as a
function of the in-plane biaxial strain for Pb(Zr0.52Ti0.48)O3 films under
various depolarizing fields. It is found that the ME voltage coefficient varies
nonmonotonically with this strain and may reach giant values exceeding 100
Vcm-1 Oe-1 over a strain range that can be controlled through the electrical
boundary conditions.Comment: Accepted as a Rapid Communication by Phys.Rev.B (http://prb.aps.org/
Piezoelectric control of the magnetic anisotropy via interface strain coupling in a composite multiferroic structure
We investigate theoretically the magnetic dynamics in a
ferroelectric/ferromagnetic heterostructure coupled via strain-mediated
magnetoelectric interaction. We predict an electric field-induced magnetic
switching in the plane perpendicular to the magneto-crystalline easy axis, and
trace this effect back to the piezoelectric control of the magnetoelastic
coupling. We also investigate the magnetic remanence and the electric
coercivity
- …
