114 research outputs found

    Influence of mean distance between fibers on the effective gas thermal conductivity in highly porous fibrous materials

    Get PDF
    This work was supported by the Russian Goverment Grant No. 14.Z50.31.0036.Peer reviewedPostprin

    Obtaining a composite material based on quartz woven filler and pyrolysis matrix of organosilicon resin

    Get PDF
    The relevance of the study is conditioned by the fact that the most popular and irreplaceable materials that have found wide application in the aerospace industry are composites based on quartz materials. These materials are distinguished by their high mechanical and electrical strength, chemical and corrosion resistance. In this regard, it is of interest to obtain a composite material that combines a low specific gravity, processability of polymers, and thermal stability of ceramics. The aim of this work was to study the effect of the temperature of thermal oxidative destruction of a polymer binder, which is a semi-finished product of a pyrolysis matrix, on the electrophysical parameters of a composite material. The paper investigates a composite material based on woven quartz material with a pyrolysis matrix of an organosilicon binder and functional additives. This composite was considered as a material for creating an electric rocket engine chamber. Thermogravimetric analysis was used to evaluate the effect of the temperature of thermooxidative degradation of the polymer binder on the electro-physical parameters of the obtained material. The tests were carried out according to standard test methods on an Instron 5969 universal testing machine with Bluehill software until the samples failed. In the course of the study, it was found that the processes that occur up to 400°C are mainly associated with the course of the reaction for non-entered functional groups, the telomerisation reaction, intramolecular rearrangement of macromolecules and the removal of low-boiling substances. According to the results of the study, the obtained characteristics of the test material turned out to be suitable for its use in structural elements of electric propulsion engines

    On the equations of the analytical dynamics of the quasi-3D plate theory of I. N. Vekua type and some their solutions

    Get PDF
    The plate theory of Nth order is constructed on the background of the Lagrangian variational formalism of analytical dynamics of continuum systems and the dimensional reduction approach of I. N. Vekua – A. A. Amosov. The plate model is defined within the configuration space, the set of field variables, and the Lagrangian density. The field variables are determined by the coefficients of the biorthogonal expansion of the spatial displacement vector field with respect to the dimensionless normal coordinate. The dynamic equations are derived as Lagrange equations of the second kind of the two-dimensional continuum system. The dynamics of the plane elastic layer is considered as an example, the normal wave propagation is described on the basis of refined plate theories of various orders, and the convergence of approximate solutions to the exact solution of the three-dimensional elastodynamics problem is analyzed for different wavenumbers

    Bending oscillations of a cylinder, surrounded by an elastic medium and containing a viscous liquid and an oscillator

    Get PDF
    The article considers dynamic processes mathematical modeling in a mechanical system, consisting of an elastic hollow cylinder, surrounded by an elastic medium and containing viscous liquid and vibrating coaxial rigid cylinder. The amplitude frequency characteristic for investigating bending cylinder oscillations as one-mass system is defined. It is shown, that the constructed amplitude characteristic makes it possible to define the considered system resonance frequencies oscillations. The calculations demonstrated the significance of taking into account viscous liquid inertia and the surrounding elastic medium

    NON-STATIONARY PROBLEM OF THE PLANE OBLIQUE PRESSURE WAVE DIFFRACTION ON THIN SHELL IN THE SHAPE OF PARABOLIC CYLINDER

    No full text
    A non-stationary plane problem of the dynamics of thin elastic shell in the form of parabolic cylinder immersed in the fluid under the impact of the plane oblique pressure wave is considered. To solve this problem, a system of equations in the related formulation is constructed. Herewith, the hydroelasticity problems are reduced to the equations of the shell dynamics, the damping effect of fluid is taken into account by introducing an integral convolution type operator in the time domain which in the first approximation allows for accounting the capillary porosity of the shell material. The operator core is a surface transition function of the auxiliary problem of the plane acoustic pressure wave diffraction on a convex surface. The problem is solved approximately based on the thin layer hypothesis. The integral and differential equations of shell motion are solved numerically based on the difference discretization of differential operators and the representation of the integral operator by sum using the trapezium rule. </jats:p

    Oxidation Resistance of a Si–TiSi2–MoSi2–TiB2–CaSi2 Coating on a Cf/C–SiC Substrate in High-Speed High-Enthalpy Air Plasma Flows

    No full text
    The results of a study on the development and testing of a heat-resistant coating in a Si–TiSi2–MoSi2–TiB2–CaSi2 system to protect Cf/C–SiC composites from oxidation and erosional entrainment in high-speed flows are presented here. The coating was formed using firing fusion technology on the powder composition. Oxidation resistance tests were carried out under static conditions in air at 1650 °C and under conditions of interaction with high-speed air plasma flows, with Mach numbers M = 5.5–6.0 and enthalpy 40–50 MJ/kg. The effectiveness of the protective action of the coating was confirmed at surface temperatures of Tw = 1810–1820 °C for at least 920–930 s, at Tw = 1850–1860 °C for not less than 510–520 s, at Tw = 1900–1920 °C for not less than 280–290 s, and at Tw = 1940–1960 °C for not less than 100–110 s. The values of the rate of loss of the coating mass and the rate constant of heterogeneous recombination of atoms and ions of air plasma on its surface were estimated. The performance of the coating was ensured by the structural-phase state of its main layer, and the formation and evolution on its surface during operation of a passivating heterogeneous oxide film. This film, in turn, is composed of borosilicate glass with titanium and calcium liquation inhomogeneities, reinforcing TiO2 microneedles and in situ Si2ON2 fibers. It was shown that at Tw ≥ 1850–1860 °C, the generation of volatile silicon monoxide was observed at the “oxide layer–coating” interface, followed by the effects of boiling and breakdown degradation of the oxide film, which significantly reduced the lifespan of the protective action of the coating
    corecore