1,010 research outputs found
Probing macroscopic realism via Ramsey correlations measurements
We describe a new and experimentally feasible protocol for performing
fundamental tests of quantum mechanics with massive objects. In our approach a
single two level system is used to probe the motion of a nanomechanical
resonator via multiple Ramsey interference measurements. This scheme enables
the measurement of modular variables of macroscopic continuous variable systems
and we show that correlations thereof violate a Leggett-Garg inequality and can
be applied for tests of quantum contextuality. Our method can be implemented
with a variety of different solid state or photonic qubit-resonator systems and
provides a clear experimental signature to distinguish the predictions of
quantum mechanics from those of other alternative theories at a macroscopic
scale.Comment: 5 pages plus Supplementary Material. Published in Phys. Rev. Let
Single-photon Optomechanics
Optomechanics experiments are rapidly approaching the regime where the
radiation pressure of a single photon displaces the mechanical oscillator by
more than its zero-point uncertainty. We show that in this limit the power
spectrum has multiple sidebands and that the cavity response has several
resonances in the resolved-sideband limit. Using master-equation simulations,
we also study the crossover from the weak-coupling many-photon to the
single-photon strong-coupling regime. Finally, we find non-Gaussian
steady-states of the mechanical oscillator when multi-photon transitions are
resonant. Our study provides the tools to detect and take advantage of this
novel regime of optomechanics.Comment: 4 pages, 4 figure
Opto-mechanical transducers for long-distance quantum communication
We describe a new scheme to interconvert stationary and photonic qubits which
is based on indirect qubit-light interactions mediated by a mechanical
resonator. This approach does not rely on the specific optical response of the
qubit and thereby enables optical quantum interfaces for a wide range of solid
state spin and charge based systems. We discuss the implementation of quantum
state transfer protocols between distant nodes of a large scale network and
evaluate the effect of the main noise sources on the resulting state transfer
fidelities. For the specific examples of electronic spin qubits and
superconducting charge qubits we show that high fidelity quantum communication
protocols can be implemented under realistic experimental conditions.Comment: Version as accepted by PR
Influence of monolayer contamination on electric-field-noise heating in ion traps
Electric field noise is a hinderance to the assembly of large scale quantum
computers based on entangled trapped ions. Apart from ubiquitous technical
noise sources, experimental studies of trapped ion heating have revealed
additional limiting contributions to this noise, originating from atomic
processes on the electrode surfaces. In a recent work [A. Safavi-Naini et al.,
Phys. Rev. A 84, 023412 (2011)] we described a microscopic model for this
excess electric field noise, which points a way towards a more systematic
understanding of surface adsorbates as progenitors of electric field jitter
noise. Here, we address the impact of surface monolayer contamination on
adsorbate induced noise processes. By using exact numerical calculations for H
and N atomic monolayers on an Au(111) surface representing opposite extremes of
physisorption and chemisorption, we show that an additional monolayer can
significantly affect the noise power spectrum and either enhance or suppress
the resulting heating rates.Comment: 8 pages, 5 figure
Defect-Suppressed Atomic Crystals in an Optical Lattice
We present a coherent filtering scheme which dramatically reduces the site
occupation number defects for atoms in an optical lattice, by transferring a
chosen number of atoms to a different internal state via adiabatic passage.
With the addition of superlattices it is possible to engineer states with a
specific number of atoms per site (atomic crystals), which are required for
quantum computation and the realisation of models from condensed matter
physics, including doping and spatial patterns. The same techniques can be used
to measure two-body spatial correlation functions. We illustrate these ideas
with a scheme to study the creation of a BCS state with a chosen filling factor
from a degenerate Fermi gas in an optical lattice.Comment: 4 Pages, 5 Figures, REVTex
Molecular Dipolar Crystals as High Fidelity Quantum Memory for Hybrid Quantum Computing
We study collective excitations of rotational and spin states of an ensemble
of polar molecules, which are prepared in a dipolar crystalline phase, as a
candidate for a high fidelity quantum memory. While dipolar crystals are formed
in the high density limit of cold clouds of polar molecules under 1D and 2D
trapping conditions, the crystalline structure protects the molecular qubits
from detrimental effects of short range collisions. We calculate the lifetime
of the quantum memory by identifying the dominant decoherence mechanisms, and
estimate their effects on gate operations, when a molecular ensemble qubit is
transferred to a superconducting strip line cavity (circuit QED). In the case
rotational excitations coupled by dipole-dipole interactions we identify
phonons as the main limitation of the life time of qubits. We study specific
setups and conditions, where the coupling to the phonon modes is minimized.
Detailed results are presented for a 1D dipolar chain
The photon blockade effect in optomechanical systems
We analyze the photon statistics of a weakly driven optomechanical system and
discuss the effect of photon blockade under single photon strong coupling
conditions. We present an intuitive interpretation of this effect in terms of
displaced oscillator states and derive analytic expressions for the cavity
excitation spectrum and the two photon correlation function . Our
results predict the appearance of non-classical photon correlations in the
combined strong coupling and sideband resolved regime, and provide a first
detailed understanding of photon-photon interactions in strong coupling
optomechanics
Self assembling magnetic tiles
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 27).Self assembly is an emerging technology in the field of manufacturing. Inspired by nature's ability to self assembly proteins from amino acids, this thesis attempts to demonstrate self assembly on the macro-scale. The primary focus of the thesis was to improve the design of magnetic tile self assembly. By constructing a flexible chain embedded with permanent magnets, self assembly is achieved through magnetic interaction. Theory has shown that such a chain is capable of self assembling into any 3D shape without self-intersection. The 3D shape created by the chain is predetermined by the sequence of the tiles. For this thesis, two chains were manufactured, each self assembling into one distinct shape. One chain self assembled into a sphere while the other self assembled into a '3-leaf clover'. An important characteristic shared by the two chains is that they both were constructed from 48 tiles that had the same proportion of north-pole and south-pole facing magnets. The difference between the two 3D shapes created is a direct result of the magnet tile sequencing, only. To connect the tiles, two different types of connectors were designed: one rigid and one flexible.(cont.) The rigid connector design was able to stabilize the chain geometry; however some joints displayed excessive rotational friction. Additionally, the chain was not robust and was easily broken if dropped. When the chain was manufactured using flexible connectors, the amount of friction in the joints was significantly reduced. However, the chain lost geometric stability since the flexible connectors could not overcome some torsion forces created by the magnets. Ultimately, this thesis provided supporting data for the theoretical arguments concerning the ability of a flexible chain to self assemble into arbitrary 3D shapes. By predetermining a sequence of magnetic tiles, it can be known with certainty what shape the chain will assume. This thesis furthered the understanding of the mechanisms of self assembly, providing groundwork for the eventual application on the nano-scale.by Jessica A. Rabl.S.B
Long-Term Stability of Planets in Binary Systems
A simple question of celestial mechanics is investigated: in what regions of
phase space near a binary system can planets persist for long times? The
planets are taken to be test particles moving in the field of an eccentric
binary system. A range of values of the binary eccentricity and mass ratio is
studied, and both the case of planets orbiting close to one of the stars, and
that of planets outside the binary orbiting the system's center of mass, are
examined. From the results, empirical expressions are developed for both 1) the
largest orbit around each of the stars, and 2) the smallest orbit around the
binary system as a whole, in which test particles survive the length of the
integration (10^4 binary periods). The empirical expressions developed, which
are roughly linear in both the mass ratio mu and the binary eccentricity e, are
determined for the range 0.0 <= e <= 0.7-0.8 and 0.1 <= mu <= 0.9 in both
regions, and can be used to guide searches for planets in binary systems. After
considering the case of a single low-mass planet in binary systems, the
stability of a mutually-interacting system of planets orbiting one star of a
binary system is examined, though in less detail.Comment: 19 pages, 5 figures, 7 tables, accepted by the Astronomical Journa
Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell
A spectroscopic technique employing an iodine absorption cell (I_2) to
superimpose a reference spectrum onto a stellar spectrum is currently the most
widely adopted approach to obtain precision radial velocities of solar-type
stars. It has been used to detect ~80 extrasolar planets out of ~130 know. Yet
in its original version, it only allows us to measure precise radial velocities
of single stars. In this paper, we present a novel method employing an I_2
absorption cell that enables us to accurately determine radial velocities of
both components of double-lined binaries. Our preliminary results based on the
data from the Keck I telescope and HIRES spectrograph demonstrate that 20-30
m/s radial velocity precision can be routinely obtained for "early" type
binaries (F3-F8). For later type binaries, the precision reaches ~10 m/s. We
discuss applications of the technique to stellar astronomy and searches for
extrasolar planets in binary systems. In particular, we combine the
interferometric data collected with the Palomar Testbed Interferometer with our
preliminary precision velocities of the spectroscopic double-lined binary HD
4676 to demonstrate that with such a combination one can routinely obtain
masses of the binary components accurate at least at the level of 1.0%.Comment: Accepted for publication in The Astrophysical Journa
- …
