136 research outputs found
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope
Globular clusters with their large populations of millisecond pulsars (MSPs)
are believed to be potential emitters of high-energy gamma-ray emission. Our
goal is to constrain the millisecond pulsar populations in globular clusters
from analysis of gamma-ray observations. We use 546 days of continuous
sky-survey observations obtained with the Large Area Telescope aboard the Fermi
Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular
clusters. Steady point-like high-energy gamma-ray emission has been
significantly detected towards 8 globular clusters. Five of them (47 Tucanae,
Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices and clear evidence for an exponential cut-off in the range
1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission
from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral
indices , however the presence of an exponential cut-off
can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC
6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral
properties. From the observed gamma-ray luminosities, we estimate the total
number of MSPs that is expected to be present in these globular clusters. We
show that our estimates of the MSP population correlate with the stellar
encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters,
commensurate with previous estimates. The observation of high-energy gamma-ray
emission from a globular cluster thus provides a reliable independent method to
assess their millisecond pulsar populations that can be used to make
constraints on the original neutron star X-ray binary population, essential for
understanding the importance of binary systems in slowing the inevitable core
collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J.
Kn\"odlseder, N. Webb, B. Pancraz
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
The helminth T2 RNase v1 promotes metabolic homeostasis in an IL-33– and group 2 innate lymphoid cell–dependent mechanism
Induction of a type 2 cellular response in
the white adipose tissue leads to weight loss and improves
glucose homeostasis in obese animals. Injection of obese
mice with recombinant helminth-derived Schistosoma mansoni
egg-derived v1 (v1), a potent inducer of type 2 activation, improves metabolic status involving a mechanism
reliant upon release of the type 2 initiator cytokine IL-33.
IL-33 initiates the accumulation of group 2 innate lymphoid cells (ILC2s), eosinophils, and alternatively activated macrophages in the adipose tissue. IL-33 release
from cells in the adipose tissue is mediated by the RNase
activity of v1; however, the ability of v1 to improve metabolic status is reliant upon effective binding of v1 to
CD206. We demonstrate a novel mechanism for RNasemediated release of IL-33 inducing ILC2-dependent improvements in the metabolic status of obese animals.—
Hams, E., Bermingham, R., Wurlod, F. A., Hogan, A. E.,
O’Shea, D., Preston, R. J., Rodewald, H.-R., McKenzie,
A. N. J., Fallon, P. G. The helminth T2 RNase v1 promotes metabolic homeostasis in an IL-33– and group 2
innate lymphoid cell–dependent mechanism
Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope
We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models
Recommended from our members
Air pollution, methane super-emitters, and oil and gas wells in Northern California: the relationship with migraine headache prevalence and exacerbation
Background
Migraine–an episodic disorder characterized by severe headache that can lead to disability–affects over 1 billion people worldwide. Prior studies have found that short-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone increases risk of migraine-related emergency department (ED) visits. Our objective was to characterize the association between long-term exposure to sources of harmful emissions and common air pollutants with both migraine headache and, among patients with migraine, headache severity.
Methods
From the Sutter Health electronic health record database, we identified 89,575 prevalent migraine cases between 2014 and 2018 using a migraine probability algorithm (MPA) score and 270,564 frequency-matched controls. Sutter Health delivers care to 3.5 million patients annually in Northern California. Exposures included 2015 annual average block group-level PM2.5 and NO2 concentrations, inverse-distance weighted (IDW) methane emissions from 60 super-emitters located within 10 km of participant residence between 2016 and 2018, and IDW active oil and gas wells in 2015 within 10 km of each participant. We used logistic and negative binomial mixed models to evaluate the association between environmental exposures and (1) migraine case status; and (2) migraine severity (i.e., MPA score > 100, triptan prescriptions, neurology visits, urgent care migraine visits, and ED migraine visits per person-year). Models controlled for age, sex, race/ethnicity, Medicaid use, primary care visits, and block group-level population density and poverty.
Results
In adjusted analyses, for each 5 ppb increase in NO2, we observed 2% increased odds of migraine case status (95% CI: 1.00, 1.05) and for each 100,000 kg/hour increase in IDW methane emissions, the odds of case status also increased (OR = 1.04, 95% CI: 1.00, 1.08). We found no association between PM2.5 or oil and gas wells and migraine case status. PM2.5 was linearly associated with neurology visits, migraine-specific urgent care visits, and MPA score > 100, but not triptans or ED visits. NO2 was associated with migraine-specific urgent care and ED visits, but not other severity measures. We observed limited or null associations between continuous measures of methane emissions and proximity to oil and gas wells and migraine severity.
Conclusions
Our findings illustrate the potential role of long-term exposure to multiple ambient air pollutants for prevalent migraine and migraine severity
Recommended from our members
Correction to: Air pollution, methane super-emitters, and oil and gas wells in Northern California: the relationship with migraine headache prevalence and exacerbation
No abstract was provided by the editors of this work
An Ensemble Framework for Projecting the Impact of Lymphatic Filariasis Interventions Across Sub-Saharan Africa at a Fine Spatial Scale
Background: Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging. Methods: We developed a computationally feasible framework for providing subnational projections for LF across 44 sub-Saharan African countries using ensemble models, guided by historical control data, to allow assessment of the role of subnational heterogeneities in global goal achievement. Projected scenarios include ongoing annual treatment from 2018 to 2030, enhanced coverage, and biannual treatment. Results: Our projections suggest that progress is likely to continue well. However, highly endemic locations currently deploying strategies with the lower World Health Organization recommended coverage (65%) and frequency (annual) are expected to have slow decreases in prevalence. Increasing intervention frequency or coverage can accelerate progress by up to 5 or 6 years, respectively. Conclusions: While projections based on baseline data have limitations, our methodological advancements provide assessments of potential bottlenecks for the global goals for LF arising from subnational heterogeneities. In particular, areas with high baseline prevalence may face challenges in achieving the 2030 goals, extending the "tail"of interventions. Enhancing intervention frequency and/or coverage will accelerate progress. Our approach facilitates preimplementation assessments of the impact of local interventions and is applicable to other regions and neglected tropical diseases.</p
Subnational Projections of Lymphatic Filariasis Elimination Targets in Ethiopia to Support National Level Policy
Background: Lymphatic filariasis (LF) is a debilitating, poverty-promoting, neglected tropical disease (NTD) targeted for worldwide elimination as a public health problem (EPHP) by 2030. Evaluating progress towards this target for national programmes is challenging, due to differences in disease transmission and interventions at the subnational level. Mathematical models can help address these challenges by capturing spatial heterogeneities and evaluating progress towards LF elimination and how different interventions could be leveraged to achieve elimination by 2030.Methods: Here we used a novel approach to combine historical geo-spatial disease prevalence maps of LF in Ethiopia with 3 contemporary disease transmission models to project trends in infection under different intervention scenarios at subnational level.Results: Our findings show that local context, particularly the coverage of interventions, is an important determinant for the success of control and elimination programmes. Furthermore, although current strategies seem sufficient to achieve LF elimination by 2030, some areas may benefit from the implementation of alternative strategies, such as using enhanced coverage or increased frequency, to accelerate progress towards the 2030 targets.Conclusions: The combination of geospatial disease prevalence maps of LF with transmission models and intervention histories enables the projection of trends in infection at the subnational level under different control scenarios in Ethiopia. This approach, which adapts transmission models to local settings, may be useful to inform the design of optimal interventions at the subnational level in other LF endemic regions
Treatment of early breast cancer: the 18th St. Gallen international breast cancer consensus conference against the background of current german treatment recommendations
- …
