147 research outputs found
In Vivo Analysis of Human LHX3 Gene Regulation
Indiana University-Purdue University Indianapolis (IUPUI)LHX3 is a transcription factor important in pituitary and nervous system development. Patients with mutations in coding regions of the gene have combined pituitary hormone deficiency (CPHD) that causes growth, fertility, and metabolic problems. Promoter and intronic elements of LHX3 important for basal gene expression in vitro have been identified, but the key regulatory elements necessary for in vivo expression were unknown. With these studies, I sought to elucidate how LHX3 gene expression is regulated in vivo. Based on sequence conservation between species in non-coding regions, I identified a 7.9 kilobase (kb) region 3' of the human LHX3 gene as a potential regulatory element. In a beta galactosidase transgenic mouse model, this region directed spatial and temporal expression to the developing pituitary gland and spinal cord in a pattern consistent with endogenous LHX3 expression. Using a systematic series of deletions, I found that the conserved region contains multiple nervous system enhancers and a minimal 180 base pair (bp) enhancer that direct expression to both the pituitary and spinal cord in transgenic mice. Within this minimal enhancer, TAAT/ATTA sequences that are characteristic of homeodomain protein binding sites are required to direct expression. I performed DNA binding experiments and chromatin immunoprecipitation assays to reveal that the ISL1 and PITX1 proteins specifically recognize these elements in vitro and in vivo. Based on in vivo mutational analyses, two tandem ISL1 binding sites are required for enhancer activity in the pituitary and spine and a PITX1 binding site is required for spatial patterning of gene expression in the pituitary. Additional experiments demonstrated that these three elements cannot alone direct gene expression, suggesting a combination of factors is required for enhancer activity. This study reveals that the key regulatory elements guiding developmental regulation of the human LHX3 gene lie in this conserved downstream region. Further, this work implicates ISL1 as a new transcriptional regulator of LHX3 and describes a possible mechanism for the regulation of LHX3 by a known upstream factor, PITX1. Identification of important regulatory regions will also enable genetic screening in candidate CPHD patients and will thereby facilitate patient treatment and genetic counseling
Chronic Estrus Disrupts Uterine Gland Development and Homeostasis
Female mice homozygous for an engineered Gnrhr E90K mutation have reduced gonadotropin-releasing hormone signaling, leading to infertility. Their ovaries have numerous antral follicles but no corpora lutea, indicating a block to ovulation. These mutants have high levels of circulating estradiol and low progesterone, indicating a state of persistent estrus. This mouse model provided a unique opportunity to examine the lack of cyclic levels of ovarian hormones on uterine gland biology. Although uterine gland development appeared similar to controls during prepubertal development, it was compromised during adolescence in the mutants. By age 20 weeks, uterine gland development was comparable to controls, but pathologies, including cribriform glandular structures, were observed. Induction of ovulations by periodic human chorionic gonadotropin treatment did not rescue postpubertal uterine gland development. Interestingly, progesterone receptor knockout mice, which lack progesterone signaling, also have defects in postpubertal uterine gland development. However, progesterone treatment did not rescue postpubertal uterine gland development. These studies indicate that chronically elevated levels of estradiol with low progesterone and therefore an absence of cyclic ovarian hormone secretion disrupts postpubertal uterine gland development and homeostasis
Transgenic mice expressing LHX3 transcription factor isoforms in the pituitary: Effects on the gonadotrope axis and sex-specific reproductive disease
The LHX3 transcription factor plays critical roles in pituitary and nervous system development. Mutations in the human LHX3 gene cause severe hormone deficiency diseases. The gene produces two mRNAs which can be translated to three protein isoforms. The LHX3a protein contains a central region with LIM domains and a homeodomain, and a carboxyl terminus with the major transactivation domain. LHX3b is identical to LHX3a except that it has a different amino terminus. M2-LHX3 lacks the amino terminus and LIM domains of LHX3a/b. In vitro experiments have demonstrated these three proteins have different biochemical and gene regulatory properties. Here, to investigate the effects of overexpression of LHX3 in vivo, the alpha glycoprotein subunit ( ΑGSU ) promoter was used to produce LHX3a, LHX3b, and M2-LHX3 in the pituitary glands of transgenic mice. Alpha GSU-beta galactosidase animals were generated as controls. Male ΑGSU-LHX3a and ΑGSU-LHX3b mice are infertile and die at a young age as a result of complications associated with obstructive uropathy including uremia. These animals have a reduced number of pituitary gonadotrope cells, low circulating gonadotropins, and possible sex hormone imbalance. Female ΑGSU-LHX3a and ΑGSU-LHX3b transgenic mice are viable but have reduced fertility. By contrast, ΑGSU-M2-LHX3 mice and control mice expressing beta galactosidase are reproductively unaffected. These overexpression studies provide insights into the properties of LHX3 during pituitary development and highlight the importance of this factor in reproductive physiology. J. Cell. Physiol. 212: 105–117, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56051/1/21010_ftp.pd
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
Loss of LPAR6 and CAB39L Dysregulates the Basal-To-Luminal Urothelial Differentiation Program, Contributing to Bladder Carcinogenesis
We describe a strategy that combines histologic and molecular mapping that permits interrogation of the chronology of changes associated with cancer development on a whole-organ scale. Using this approach, we present the sequence of alterations around RB1 in the development of bladder cancer. We show that RB1 is not involved in initial expansion of the preneoplastic clone. Instead, we found a set of contiguous genes that we term forerunner genes whose silencing is associated with the development of plaque-like field effects initiating carcinogenesis. Specifically, we identified five candidate forerunner genes (ITM2B, LPAR6, MLNR, CAB39L, and ARL11) mapping near RB1. Two of these genes, LPAR6 and CAB39L, are preferentially downregulated in the luminal and basal subtypes of bladder cancer, respectively. Their loss of function dysregulates urothelial differentiation, sensitizing the urothelium to N-butyl-N-(4-hydroxybutyl)nitrosamine-induced cancers, which recapitulate the luminal and basal subtypes of human bladder cancer
An Interdisciplinary Consensus Approach to Pulmonary Hypertension in Developmental Lung Disease
It is increasingly recognised that diverse genetic respiratory disorders present as severe pulmonary hypertension (PH) in the neonate and young infant, but many controversies and uncertainties persist regarding optimal strategies for diagnosis and management to maximise long-term outcomes. To better define the nature of PH in the setting of developmental lung disease (DEVLD), in addition to the common diagnoses of bronchopulmonary dysplasia and congenital diaphragmatic hernia, we established a multidisciplinary group of expert clinicians from stakeholder paediatric specialties to highlight current challenges and recommendations for clinical approaches, as well as counselling and support of families. In this review, we characterise clinical features of infants with DEVLD/DEVLD-PH and identify decision-making challenges including genetic evaluations, the role of lung biopsies, the use of imaging modalities and treatment approaches. The importance of working with team members from multiple disciplines, enhancing communication and providing sufficient counselling services for families is emphasised to create an interdisciplinary consensus
Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial
Background Phenytoin is the recommended second-line intravenous anticonvulsant for treatment of paediatric convulsive status epilepticus in the UK; however, some evidence suggests that levetiracetam could be an effective and safer alternative. This trial compared the efficacy and safety of phenytoin and levetiracetam for second-line management of paediatric convulsive status epilepticus.Methods This open-label, randomised clinical trial was undertaken at 30 UK emergency departments at secondary and tertiary care centres. Participants aged 6 months to under 18 years, with convulsive status epilepticus requiring second-line treatment, were randomly assigned (1:1) using a computer-generated randomisation schedule to receive levetiracetam (40 mg/kg over 5 min) or phenytoin (20 mg/kg over at least 20 min), stratified by centre. The primary outcome was time from randomisation to cessation of convulsive status epilepticus, analysed in the modified intention-to-treat population (excluding those who did not require second-line treatment after randomisation and those who did not provide consent). This trial is registered with ISRCTN, number ISRCTN22567894.Findings Between July 17, 2015, and April 7, 2018, 1432 patients were assessed for eligibility. After exclusion of ineligible patients, 404 patients were randomly assigned. After exclusion of those who did not require second-line treatment and those who did not consent, 286 randomised participants were treated and had available data: 152 allocated to levetiracetam, and 134 to phenytoin. Convulsive status epilepticus was terminated in 106 (70%) children in the levetiracetam group and in 86 (64%) in the phenytoin group. Median time from randomisation to cessation of convulsive status epilepticus was 35 min (IQR 20 to not assessable) in the levetiracetam group and 45 min (24 to not assessable) in the phenytoin group (hazard ratio 1·20, 95% CI 0·91–1·60; p=0·20). One participant who received levetiracetam followed by phenytoin died as a result of catastrophic cerebral oedema unrelated to either treatment. One participant who received phenytoin had serious adverse reactions related to study treatment (hypotension considered to be immediately life-threatening [a serious adverse reaction] and increased focal seizures and decreased consciousness considered to be medically significant [a suspected unexpected serious adverse reaction]). Interpretation Although levetiracetam was not significantly superior to phenytoin, the results, together with previously reported safety profiles and comparative ease of administration of levetiracetam, suggest it could be an appropriate alternative to phenytoin as the first-choice, second-line anticonvulsant in the treatment of paediatric convulsive status epilepticus
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1
- …
