378 research outputs found
Best Interests Assessor Role: An Opportunity or a ‘Dead End’ for Adult Social Workers?
© 2017 British Association of Social Workers. This opinion article explores the significance of the Best Interests Assessor role in England and Wales for social workers working with adults. It considers the challenges of the role following the Supreme Court’s Cheshire West (2014) judgement and the implications for BIAs of the Law Commission’s 2017 plans for replacing DoLS with the ‘Liberty Protection Safeguards’. The author explains why they consider the BIA role to be a valuable one for the status of adult social work as well as for people who may lack capacity to uphold their human rights, with some reservations about the risk of diluting the safeguards the current role represents for those vulnerable people
Structural Studies of a Circularly Permuted Human Hemoglobin Containing Low O₂-affinity Mutations
Our research is focused on the production of a hemoglobin-based oxygen carrier (HBOC) which can be used as a therapeutic in the event of acute blood loss. The administration of cell-free hemoglobin is associated with severe adverse effects due to dissociation of the tetrameric α₂β₂ complex into αβ heterodimers. Our approach to designing an effective HBOC is based on a recombinant circularly permuted human hemoglobin in which all of the subunits are linked in a single-chain fashion. This design would prevent the dissociation of the tetramer and allow for the biosynthesis of polymeric hemoglobins of defined mass. Preliminary ligand binding data with our permuted hemoglobins indicates that they prefer the high O₂-affinity R-state conformation over the low O₂-affinity T state. The βN108K and αV96W mutations were introduced to restore T state stability. Preliminary studies of the mutants have shown that while the βN108K mutation improved T-state stability, the αV96W mutation displays an unexpected destabilizing effect on the T state. We would like to understand the molecular basis for the surprising results. We intend to determine the X-ray crystal structure of the αV96W mutant as well as the βN108K mutant and the αV96W + βN108K double mutant to gain an atomic-level picture of protein structural differences that could explain these results
Gyrotactic swimmer dispersion in pipe flow: testing the theory
Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display non-zero drift and effective diffusivity that is non-monotonic with Péclet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga Dunaliella salina, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary comparison with predictions of a non-zero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss the implications of our results for algal dispersion in industrial photobioreactors
First trimester exposure to anxiolytic and hypnotic drugs and the risks of major congenital anomalies: a United Kingdom population-based cohort study
BACKGROUND: Despite their widespread use the effects of taking benzodiazepines and non-benzodiazepine hypnotics during pregnancy on the risk of major congenital anomaly (MCA) are uncertain. The objectives were to estimate absolute and relative risks of MCAs in children exposed to specific anxiolytic and hypnotic drugs taken in the first trimester of pregnancy, compared with children of mothers with depression and/or anxiety but not treated with medication and children of mothers without diagnosed mental illness during pregnancy.
METHODS: We identified singleton children born to women aged 15–45 years between 1990 and 2010 from a large United Kingdom primary care database. We calculated absolute risks of MCAs for children with first trimester exposures of different anxiolytic and hypnotic drugs and used logistic regression with a generalised estimating equation to compare risks adjusted for year of childbirth, maternal age, smoking, body mass index, and socioeconomic status.
RESULTS: Overall MCA prevalence was 2.7% in 1,159 children of mothers prescribed diazepam, 2.9% in 379 children with temazepam, 2.5% in 406 children with zopiclone, and 2.7% in 19,193 children whose mothers had diagnosed depression and/or anxiety but no first trimester drug exposures. When compared with 2.7% in 351,785 children with no diagnosed depression/anxiety nor medication use, the adjusted odds ratios were 1.02 (99% confidence interval 0.63–1.64) for diazepam, 1.07 (0.49–2.37) for temazepam, 0.96 (0.42–2.20) for zopiclone and 1.27 (0.43–3.75) for other anxiolytic/hypnotic drugs and 1.01 (0.90–1.14) for un-medicated depression/anxiety. Risks of system-specific MCAs were generally similar in children exposed and not exposed to such medications.
CONCLUSIONS: We found no evidence for an increase in MCAs in children exposed to benzodiazepines and non-benzodiazepine hypnotics in the first trimester of pregnancy. These findings suggest that prescription of these drugs during early pregnancy may be safe in terms of MCA risk, but findings from other studies are required before safety can be confirmed
Progress Toward Structural Studies of a Circularly Permuted Human Hemoglobins Containing T-State Stabilizing Mutations
Our research is focused on the production of a hemoglobin based oxygen carrier (HBOC) which can be used as a therapeutic in the event of acute blood loss. The administration of cell-free hemoglobin is associated with severe adverse effects due to dissociation of the tetrameric α₂β₂ complex into αβ heterodimers. Our approach to the design of an effective HBOC, is based on a recombinant circularly permuted human hemoglobin in which all of the subunits are linked in a single-chain fashion. This design would prevent the dissociation of the tetramer and allow for the biosynthesis of polymeric hemoglobins of defined mass. Preliminary ligand binding data with our permuted hemoglobins indicate that they prefer the high O₂-affinity R-state conformation over the low O₂-affinity T state. The βN108K and αV96W mutations were introduced to restore T state stability. Preliminary studies of the mutants have shown that while the βN108K mutation improved T-state stability, the αV96W mutation, in the context of the permuted hemoglobin backbone, displays an unexpected destabilizing effect on the T state. We have inserted the βN108K mutation into our single chain hemoglobin in order to obtain structural and functional data however it was discovered that this change significantly decreases expression yield. We would like to utilize X-ray crystallography to gain an atomic-level picture of protein structural differences that could explain the results from our αV96W mutants. Crystallization trials are underway for the αV96W mutant as well as the βN108K mutant and a αV96W + βN108K double mutant. To date no crystals have been obtained that diffract X-rays
Maternal depression, antidepressant prescriptions, and congenital anomaly risk in offspring: a population-based cohort study
OBJECTIVE: To estimate risks of major congenital anomaly (MCA) among children of mothers prescribed antidepressants during early pregnancy or diagnosed with depression but without antidepressant prescriptions. DESIGN: Population-based cohort study.
SETTING: Linked UK maternal–child primary care records.
POPULATION: A total of 349 127 singletons liveborn between 1990 and 2009.
METHODS: Odds ratios adjusted for maternal sociodemographics and comorbidities (aORs) were calculated for MCAs, comparing women with first-trimester selective serotonin reuptake inhibitors (SSRIs) or tricyclic antidepressants (TCAs) and women with diagnosed but unmedicated depression, or women without diagnosed depression.
MAIN OUTCOME MEASURES: Fourteen system-specific MCA groups classified according to the European Surveillance of Congenital Anomalies and five specific heart anomaly groups. RESULTS: Absolute risks of MCA were 2.7% (95% confidence interval, 95% CI, 2.6–2.8%) in children of mothers without diagnosed depression, 2.8% (95% CI 2.5–3.2%) in children of mothers with unmedicated depression, and 2.7% (95% CI 2.2–3.2%) and 3.1% (95% CI 2.2–4.1%) in children of mothers with SSRIs or TCAs, respectively. Compared with women without depression, MCA overall was not associated with unmedicated depression (aOR 1.07, 95% CI 0.96–1.18), SSRIs (aOR 1.01, 95% CI 0.88–1.17), or TCAs (aOR 1.09, 95% CI 0.87–1.38). Paroxetine was associated with increased heart anomalies (absolute risk 1.4% in the exposed group compared with 0.8% in women without depression; aOR 1.78, 95% CI 1.09–2.88), which decreased marginally when compared with women with diagnosed but unmedicated depression (aOR 1.67, 95% CI 1.00–2.80).
CONCLUSIONS: Overall MCA risk did not increase with maternal depression or with antidepressant prescriptions. Paroxetine was associated with increases of heart anomalies, although this could represent a chance finding from a large number of comparisons undertaken
Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring
Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. Reliable and accurate quantification of the proteins present in a cell or tissue remains a major challenge for post-genome scientists. Proteins are the primary functional molecules in biological systems and knowledge of their abundance and dynamics is an important prerequisite to a complete understanding of natural physiological processes, or dysfunction in disease. Accordingly, much effort has been spent in the development of reliable, accurate and sensitive techniques to quantify the cellular proteome, the complement of proteins expressed at a given time under defined conditions (1). Moreover, the ability to model a biological system and thus characterize it in kinetic terms, requires that protein concentrations be defined in absolute numbers (2, 3). Given the high demand for accurate quantitative proteome data sets, there has been a continual drive to develop methodology to accomplish this, typically using mass spectrometry (MS) as the analytical platform. Many recent studies have highlighted the capabilities of MS to provide good coverage of the proteome at high sensitivity often using yeast as a demonstrator system (4⇓⇓⇓⇓⇓–10), suggesting that quantitative proteomics has now “come of age” (1). However, given that MS is not inherently quantitative, most of the approaches produce relative quantitation and do not typically measure the absolute concentrations of individual molecular species by direct means. For the yeast proteome, epitope tagging studies using green fluorescent protein or tandem affinity purification tags provides an alternative to MS. Here, collections of modified strains are generated that incorporate a detectable, and therefore quantifiable, tag that supports immunoblotting or fluorescence techniques (11, 12). However, such strategies for copies per cell (cpc) quantification rely on genetic manipulation of the host organism and hence do not quantify endogenous, unmodified protein. Similarly, the tagging can alter protein levels - in some instances hindering protein expression completely (11). Even so, epitope tagging methods have been of value to the community, yielding high coverage quantitative data sets for the majority of the yeast proteome (11, 12). MS-based methods do not rely on such nonendogenous labels, and can reach genome-wide levels of coverage. Accurate estimation of absolute concentrations i.e. protein copy number per cell, also usually necessitates the use of (one or more) external or internal standards from which to derive absolute abundance (4). Examples include a comprehensive quantification of the Leptospira interrogans proteome that used a 19 protein subset quantified using selected reaction monitoring (SRM)1 to calibrate their label-free data (8, 13). It is worth noting that epitope tagging methods, although also absolute, rely on a very limited set of standards for the quantitative western blots and necessitate incorporation of a suitable immunogenic tag (11). Other recent, innovative approaches exploiting total ion signal and internal scaling to estimate protein cellular abundance (10, 14), avoid the use of internal standards, though they do rely on targeted proteomic data to validate their approach. The use of targeted SRM strategies to derive proteomic calibration standards highlights its advantages in comparison to label-free in terms of accuracy, precision, dynamic range and limit of detection and has gained currency for its reliability and sensitivity (3, 15⇓–17). Indeed, SRM is often referred to as the “gold standard proteomic quantification method,” being particularly well-suited when the proteins to be quantified are known, when appropriate surrogate peptides for protein quantification can be selected a priori, and matched with stable isotope-labeled (SIL) standards (18⇓–20). In combination with SIL peptide standards that can be generated through a variety of means (3, 15), SRM can be used to quantify low copy number proteins, reaching down to ∼50 cpc in yeast (5). However, although SRM methodology has been used extensively for S. cerevisiae protein quantification by us and others (19, 21, 22), it has not been used for large protein cohorts because of the requirement to generate the large numbers of attendant SIL peptide standards; the largest published data set is only for a few tens of proteins. It remains a challenge therefore to robustly quantify an entire eukaryotic proteome in absolute terms by direct means using targeted MS and this is the focus of our present study, the Census Of the Proteome of Yeast (CoPY). We present here direct and absolute quantification of nearly 2000 endogenous proteins from S. cerevisiae grown in steady state in a chemostat culture, using the SRM-based QconCAT approach. Although arguably not quantification of the entire proteome, this represents an accurate and rigorous collection of direct yeast protein quantifications, providing a gold-standard data set of endogenous protein levels for future reference and comparative studies. The highly reproducible SIL-SRM MS data, with robust CVs typically less than 20%, is compared with other extant data sets that were obtained via alternative analytical strategies. We also report a matched high quality transcriptome from the same cells using RNA-seq, which supports additional calculations including a refined estimate of the total protein content in yeast cells, and a simple linear model of translation explaining 70% of the variance between RNA and protein levels in yeast chemostat cultures. These analyses confirm the validity of our data and approach, which we believe represents a state-of-the-art absolute quantification compendium of a significant proportion of a model eukaryotic proteome
Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thaliana
Aims: The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Results: Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. Innovation: These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Conclusions: Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem
Incorporating multiparametric MRI staging and the new histological Grade Group system improves risk-stratified detection of bone metastasis in prostate cancer
: There remains uncertainty on the need for bone staging in men with intermediate-risk prostate cancer. Current guidelines do not use mpMRI-staging information and rely on historic pathology grading.
: We investigated the ability of mpMRI and the new Grade Group system to better predict bone metastasis status in a retrospective cohort study of 438 men with prostate cancer undergoing baseline mpMRI and isotope bone scintigraphy (BS).
: Including mpMRI-staging information significantly increased the specificity of bone metastasis detection from 3.0% to 24.2% (P<0.01) and sensitivity from 89.2% to 97.3%. The new Grade Group score demonstrated progressive increase in bone metastasis rates (P<0.001). A novel risk-stratification model combining Grade Groups, PSA and mpMRI staging shows promise in predicting bone metastasis and could potentially reduce BS usage by 22.4%-34.7%.
: Incorporating the new Grade Group system and mpMRI staging more accurately identified bone metastatic risk and suggests men with Grade Group ⩽2 and/or without radiological T3 disease could safely avoid routine bone staging.We thank research support from the National Institute of Health Research, Cambridge Biomedical Research Centre, Cancer Research UK, Cancer Research UK and the Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester and the Cambridge Experimental Cancer Medicine Centre
- …
