120 research outputs found
Роль социологических опросов в изучении водопотребления населения
Доказано, що соціологічні опитування є важливим інструментам формування програм соціальної та екологічної скерованості. Вони дозволяють отримати не лише суб'єктивну, але і об'єктивну оцінку стану довкілля, інформацію про ефективність муніципальних та державних програм, можуть бути використані для проведення маркетингових досліджень.It is shown that sociological questionnaire are the important tool at formation of the programs of a social and ecological orientation, allow to receive not only subjective, but also objective estimation of a condition of an environment, allow to receive the information not only about efficiency of the municipal and state programs, but also to be used for realization of marketing researches
Проблематика научных исследований И.Г. Спасского
У статті розглянуто широке коло наукових інтересів відомого радянського вченого І.Г. Спасського у російській нумізматиці – від староруських монет Х ст. й українських дукачів, якими він почав займатися ще в студентські роки, до російських і радянських монет першої половини ХХ ст. та західноєвропейських єфимків з російським надкарбуванням періоду Олексія Михайловича.В статье рассмотрен широкий круг научных интересов крупнейшего советского ученого И.Г.Спасского в русской нумизматике – от древнерусских монет Х в. и украинских дукачей, которыми он начал заниматься еще в студенческие годы, до русских и советских монет первой половины ХХ в. и западноевропейских ефимков с русскими надчеканками времени Алексея Михайловича.The wide circle of scientific interests of I.G. Spassky – the famous soviet scientist in Russian numismatics is considered in the article – from the old-russian chinks of 10 century and Ukrainian dukach, which he began to be engaged in as early as student years, to the Russian and soviet chinks of the first half of 20 century and West European yefimks with the Russian supercoinage of period of zar Alexei Michailivich
Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients
Osteoarthritis (OA) is a leading cause of disability, globally. Despite an emerging role for synovial inflammation in OA pathogenesis, attempts to target inflammation therapeutically have had limited success. A better understanding of the cellular and molecular processes occurring in the OA synovium is needed to develop novel therapeutics. We investigated macrophage phenotype and gene expression in synovial tissue of OA and inflammatory-arthritis (IA) patients. Compared with IA, OA synovial tissue contained higher but variable proportions of macrophages (P < 0.001). These macrophages exhibited an activated phenotype, expressing folate receptor-2 and CD86, and displayed high phagocytic capacity. RNA sequencing of synovial macrophages revealed 2 OA subgroups. Inflammatory-like OA (iOA) macrophages are closely aligned to IA macrophages and are characterized by a cell proliferation signature. In contrast, classical OA (cOA) macrophages display cartilage remodeling features. Supporting these findings, when compared with cOA, iOA synovial tissue contained higher proportions of macrophages (P < 0.01), expressing higher levels of the proliferation marker Ki67 (P < 0.01). These data provide new insight into the heterogeneity of OA synovial tissue and suggest distinct roles of macrophages in pathogenesis. Our findings could lead to the stratification of OA patients for suitable disease-modifying treatments and the identification of novel therapeutic targets
A case of mistaken identity: HSPs are no DAMPs but DAMPERs
Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1–5, 2007; Kono and Rock, Nat Rev Immunol 8:279–289, 2008; Martin-Murphy et al., Toxicol Lett 192:387–394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395–1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue
In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
The IceCube Neutrino Observatory instruments
about 1 km3 of deep, glacial ice at the geographic South
Pole. It uses 5160 photomultipliers to detect Cherenkov
light emitted by charged relativistic particles. An unexpected
light propagation effect observed by the experiment is an
anisotropic attenuation, which is aligned with the local flow
direction of the ice. We examine birefringent light propaga-
tion through the polycrystalline ice microstructure as a pos-
sible explanation for this effect. The predictions of a first-
principles model developed for this purpose, in particular
curved light trajectories resulting from asymmetric diffusion,
provide a qualitatively good match to the main features of the
data. This in turn allows us to deduce ice crystal properties.
Since the wavelength of the detected light is short compared
to the crystal size, these crystal properties include not only
the crystal orientation fabric, but also the average crystal size
and shape, as a function of depth. By adding small empiri-
cal corrections to this first-principles model, a quantitatively
accurate description of the optical properties of the IceCube
glacial ice is obtained. In this paper, we present the exper-
imental signature of ice optical anisotropy observed in Ice-
Cube light-emitting diode (LED) calibration data, the theory
and parameterization of the birefringence effect, the fitting
procedures of these parameterizations to experimental data,
and the inferred crystal propertie
Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory
IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range.
We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct
Highlights from the IceCube Neutrino Observatory
As IceCube surpasses a decade of operation in the full detector configuration, results that drive forward the fields of neutrino astronomy, cosmic ray physics, multi-messenger astronomy, particle physics, and beyond continue to emerge at an accelerated pace. IceCube data is dominated by background events, and thus teasing out the signal is the common challenge to most analyses. Statistical accumulation of data, along with better understanding of the background fluxes, the detector, and continued development of our analysis tools have produced many profound results that were presented at ICRC2023. Highlights covered here include the first neutrino observation of the Galactic Plane, the first observation of a steady emission neutrino point source NGC1068, new characterizations of the cosmic ray flux and its secondary particles, and a possible new era in measuring the energy spectrum of the diffuse astrophysical flux. IceCube is poised to make more discoveries and drive fields forward in the near future with many novel analyses coming online
Search for the rare interactions of neutrinos from distant point sources with the IceCube Neutrino Telescope
The recent discovery and evidence of neutrino signals from distant sources, TXS 0506+056 and NGC 1068 respectively, provide opportunities to search for rare interactions of neutrinos that they might encounter on their paths. One potential scenario of interest is the interaction between neutrinos and dark matter, which is invisible and expected to be abundantly spread over the Universe. Various astrophysical observations have implied the existence of dark matter. When high-energy neutrinos from extragalactic sources interact with dark matter during their propagation, their spectra might show suppressions at specific energy ranges, where such interactions occur. These attenuation signatures from the interaction might be measurable on Earth with large neutrino telescopes such as the IceCube Neutrino Observatory. This analysis is focused on the search for rare interactions of high-energy neutrinos from the IceCube-identified astrophysical neutrino sources with dark matter in sub-GeV masses and several benchmark mediator cases using the upgoing track-like events. In this poster, sensitivity studies about the interaction of neutrinos and dark matter are presented
A new simulation framework for IceCube Upgrade calibration using IceCube Upgrade Camera system
Currently, an upgrade consisting of seven densely instrumented strings in the center of the volume of the IceCube detector with new digital optical modules (DOMs) is being built. On each string, DOMs will be regularly spaced with a vertical separation of 3 m between depths of 2160 m and 2430 m below the surface of the ice, which is a denser configuration compared to the existing DOMs of IceCube detector.
For a precise calibration of the IceCube Upgrade it is important to understand the properties of the ice, both inside and surrounding the deployment holes.LEDs and Camera systems, which are developed and produced at Sungkyunkwan university, are installed in every single DOM to measure these properties. For these calibration measurements, a new simulation framework, which produces expected images from various geometric and optical variables has been developed and images produced from the simulation are expected to be used to develop an analysis framework for the IceCube Upgrade camera calibration system and for the design of the IceCube Gen2 camera system
- …
