1,806 research outputs found

    Reading Speculative Futures in a Post-Truth World

    Get PDF
    Faced with the threat of a “post-truth” world and a widening chasm of exchange between climate change deniers and environmentalists, I argue that future-orientated literary and media speculative fictions—which I term “speculative futures”—offer a means of building lines of communication across social and political divisions. This thought piece on “The Environmental Humanities in a Post-Truth World” mediates upon the potentiality of speculative futures as theory, social bridge-building, and pedagogical tool. Speculative fictions (especially those that address environmental justice, and anti-colonial and feminist politics) use storytelling and future imaginaries to challenge political falsehoods and imagine more ecological, de-colonized futures

    The PCSE Estimator is Good -- Just Not as Good as You Think

    Get PDF
    This paper investigates the properties of the Panel-Corrected Standard Error (PCSE) estimator. The PCSE estimator is commonly used when working with time-series, crosssectional (TSCS) data. In an influential paper, Beck and Katz (1995) (henceforth BK) demonstrated that FGLS produces coefficient standard errors that are severely underestimated. They report Monte Carlo experiments in which the PCSE estimator produces accurate standard error estimates at no, or little, loss in efficiency compared to FGLS. Our study further investigates the properties of the PCSE estimator. We first reproduce the main experimental results of BK using their Monte Carlo framework. We then show that the PCSE estimator does not perform as well when tested in data environments that better resemble “practical research situations.” When (i) the explanatory variable(s) are characterized by substantial persistence, (ii) there is serial correlation in the errors, and (iii) the time span of the data series is relatively short, coverage rates for the PCSE estimator frequently fall between 80 and 90 percent. Further, we find many “practical research situations” where the PCSE estimator compares poorly with FGLS on efficiency grounds.Panel data estimation; Monte Carlo analysis; FGLS; Parks; PCSE; finite sample

    Estimating Standard Errors For The Parks Model: Can Jackknifing Help?

    Get PDF
    Non-spherical errors, namely heteroscedasticity, serial correlation and cross-sectional correlation are commonly present within panel data sets. These can cause significant problems for econometric analyses. The FGLS(Parks) estimator has been demonstrated to produce considerable efficiency gains in these settings. However, it suffers from underestimation of coefficient standard errors, oftentimes severe. Potentially, jackknifing the FGLS(Parks) estimator could allow one to maintain the efficiency advantages of FGLS(Parks) while producing more reliable estimates of coefficient standard errors. Accordingly, this study investigates the performance of the jackknife estimator of FGLS(Parks) using Monte Carlo experimentation. We find that jackknifing can -- in narrowly defined situations -- substantially improve the estimation of coefficient standard errors. However, its overall performance is not sufficient to make it a viable alternative to other panel data estimators.Panel Data estimation; Parks model; cross-sectional correlation; jackknife; Monte Carlo

    Enhancing skin integrity: an interprofessional approach

    Get PDF
    Earlier this year the University of Huddersfield's Institute of Skin Integrity and Infection Prevention in association with the Journal of Wound Care (JWC) held the first International Skin Integrity and Infection Prevention Conference. The 2-day event consisted of a mix of keynotes, symposia and short presentations from key opinion leaders and post graduate research students. Here Professor Karen Ousey and Dr Rachel Webb present the highlights of this event

    MODBASE, a database of annotated comparative protein structure models and associated resources.

    Get PDF
    MODBASE (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by MODPIPE, an automated modeling pipeline that relies primarily on MODELLER for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.org/modeller). MODBASE currently contains 5,152,695 reliable models for domains in 1,593,209 unique protein sequences; only models based on statistically significant alignments and/or models assessed to have the correct fold are included. MODBASE also allows users to calculate comparative models on demand, through an interface to the MODWEB modeling server (http://salilab.org/modweb). Other resources integrated with MODBASE include databases of multiple protein structure alignments (DBAli), structurally defined ligand binding sites (LIGBASE), predicted ligand binding sites (AnnoLyze), structurally defined binary domain interfaces (PIBASE) and annotated single nucleotide polymorphisms and somatic mutations found in human proteins (LS-SNP, LS-Mut). MODBASE models are also available through the Protein Model Portal (http://www.proteinmodelportal.org/)

    Development of a multivariable risk model integrating urinary cell DNA methylation and cell-free RNA data for the detection of significant prostate cancer

    Get PDF
    Background: Prostate cancer exhibits severe clinical heterogeneity and there is a critical need for clinically implementable tools able to precisely and noninvasively identify patients that can either be safely removed from treatment pathways or those requiring further follow up. Our objectives were to develop a multivariable risk prediction model through the integration of clinical, urine-derived cell-free messenger RNA (cf-RNA) and urine cell DNA methylation data capable of noninvasively detecting significant prostate cancer in biopsy naïve patients. Methods: Post-digital rectal examination urine samples previously analyzed separately for both cellular methylation and cf-RNA expression within the Movember GAP1 urine biomarker cohort were selected for a fully integrated analysis (n = 207). A robust feature selection framework, based on bootstrap resampling and permutation, was utilized to find the optimal combination of clinical and urinary markers in a random forest model, deemed ExoMeth. Out-of-bag predictions from ExoMeth were used for diagnostic evaluation in men with a clinical suspicion of prostate cancer (PSA ≥ 4 ng/mL, adverse digital rectal examination, age, or lower urinary tract symptoms). Results: As ExoMeth risk score (range, 0-1) increased, the likelihood of high-grade disease being detected on biopsy was significantly greater (odds ratio = 2.04 per 0.1 ExoMeth increase, 95% confidence interval [CI]: 1.78-2.35). On an initial TRUS biopsy, ExoMeth accurately predicted the presence of Gleason score ≥3 + 4, area under the receiver-operator characteristic curve (AUC) = 0.89 (95% CI: 0.84-0.93) and was additionally capable of detecting any cancer on biopsy, AUC = 0.91 (95% CI: 0.87-0.95). Application of ExoMeth provided a net benefit over current standards of care and has the potential to reduce unnecessary biopsies by 66% when a risk threshold of 0.25 is accepted. Conclusion: Integration of urinary biomarkers across multiple assay methods has greater diagnostic ability than either method in isolation, providing superior predictive ability of biopsy outcomes. ExoMeth represents a more holistic view of urinary biomarkers and has the potential to result in substantial changes to how patients suspected of harboring prostate cancer are diagnosed

    Cardiovascular disease biomarkers are associated with declining renal function in type 2 diabetes

    Get PDF
    Aims/hypothesis: We investigated whether biochemical cardiovascular risk factors and/or markers of subclinical cardiovascular disease were associated with the development of reduced renal function in people with type 2 diabetes. Methods: A cohort of 1066 Scottish men and women aged 60–74 years with type 2 diabetes from the Edinburgh Type 2 Diabetes Study were followed up for a median of 6.7 years. New-onset reduced renal function was defined as two eGFRs <60 ml−1 min−1 (1.73 m)−2 at least 3 months apart with a > 25% decline from baseline eGFR. Ankle brachial pressure index (ABI), N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin T (hsTnT) were measured at baseline. Pulse wave velocity (PWV) and carotid intima media thickness were measured 1 year into follow-up. Data were analysed using Cox proportional hazards models. Results: A total of 119 participants developed reduced renal function during follow-up. ABI, PWV, NT-proBNP and hsTnT were all associated with onset of decline in renal function following adjustment for age and sex. These associations were attenuated after adjustment for additional diabetes renal disease risk factors (systolic BP, baseline eGFR, albumin:creatinine ratio and smoking pack-years), with the exception of hsTnT which remained independently associated (HR 1.51 [95% CI 1.22, 1.87]). Inclusion of hsTnT in a predictive model improved the continuous net reclassification index by 0.165 (0.008, 0.286). Conclusions/interpretation: Our findings demonstrate an association between hsTnT, a marker of subclinical cardiac ischaemia, and subsequent renal function decline. Further research is required to establish the predictive value of hsTnT and response to intervention
    corecore