8,128 research outputs found
Gender and school-level differences in students' moderate and vigorous physical activity levels when taught basketball through the tactical games model
The Tactical Games Model (TGM) prefaces the cognitive components of physical education (PE), which has implications for physical activity (PA) accumulation. PA recommendations suggest students reach 50% moderate-vigorous physical activity (MVPA). However, this criterion does not indicate the contribution from vigorous physical activity (VPA). Consequently, this study investigated: a) the effects of TGM delivery on MVPA/VPA and, b) gender/school level differences. Participants were 78 seventh and 96 fourth/fifth grade coeducational PE students from two different schools. Two teachers taught 24 (middle) and 30 (elementary) level one TGM basketball lessons. Students wore Actigraph GT3× triaxial accelerometers. Data were analyzed using four one-way ANOVAs. Middle school boys had significantly higher MVPA/VPA (34.04/22.37%) than girls (25.14/15.47%). Elementary school boys had significantly higher MVPA/VPA (29.73/18.33%) than girls (23.03/14.33%). While TGM lessons provide a context where students can accumulate VPA consistent with national PA recommendations, teachers need to modify lesson activities to enable equitable PA participation
Work-related correlates of occupational sitting in a diverse sample of employees in Midwest metropolitan cities
The worksite serves as an ideal setting to reduce sedentary time. Yet little research has focused on occupational sitting, and few have considered factors beyond the personal or socio-demographic level. The current study i) examined variation in occupational sitting across different occupations, ii) explored whether worksite level factors (e.g., employer size, worksite supports and policies) may be associated with occupational sitting.
Between 2012 and 2013, participants residing in four Missouri metropolitan areas were interviewed via telephone and provided information on socio-demographic characteristics, schedule flexibility, occupation, work related factors, and worksite supports and policies. Occupational sitting was self-reported (daily minutes spent sitting at work), and dichotomized. Occupation-stratified analyses were conducted to identify correlates of occupational sitting using multiple logistic regressions.
A total of 1668 participants provided completed data. Those employed in business and office/administrative support spent more daily occupational sitting time (median 330 min) compared to service and blue collar employees (median 30 min). Few worksite supports and policies were sitting specific, yet factors such as having a full-time job, larger employer size, schedule flexibility, and stair prompt signage were associated with occupational sitting. For example, larger employer size was associated with higher occupational sitting in health care, education/professional, and service occupations.
Work-related factors, worksite supports and policies are associated with occupational sitting. The pattern of association varies among different occupation groups. This exploratory work adds to the body of research on worksite level correlates of occupational sitting. This may provide information on priority venues for targeting highly sedentary occupation groups
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions.ISSN:0962-8452ISSN:1471-295
Recommended from our members
Redox-dependent gating of VDAC by mitoNEET.
MitoNEET is an outer mitochondrial membrane protein essential for sensing and regulation of iron and reactive oxygen species (ROS) homeostasis. It is a key player in multiple human maladies including diabetes, cancer, neurodegeneration, and Parkinson's diseases. In healthy cells, mitoNEET receives its clusters from the mitochondrion and transfers them to acceptor proteins in a process that could be altered by drugs or during illness. Here, we report that mitoNEET regulates the outer-mitochondrial membrane (OMM) protein voltage-dependent anion channel 1 (VDAC1). VDAC1 is a crucial player in the cross talk between the mitochondria and the cytosol. VDAC proteins function to regulate metabolites, ions, ROS, and fatty acid transport, as well as function as a "governator" sentry for the transport of metabolites and ions between the cytosol and the mitochondria. We find that the redox-sensitive [2Fe-2S] cluster protein mitoNEET gates VDAC1 when mitoNEET is oxidized. Addition of the VDAC inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) prevents both mitoNEET binding in vitro and mitoNEET-dependent mitochondrial iron accumulation in situ. We find that the DIDS inhibitor does not alter the redox state of MitoNEET. Taken together, our data indicate that mitoNEET regulates VDAC in a redox-dependent manner in cells, closing the pore and likely disrupting VDAC's flow of metabolites
Recommended from our members
Epidemic dynamics of respiratory syncytial virus in current and future climates.
A key question for infectious disease dynamics is the impact of the climate on future burden. Here, we evaluate the climate drivers of respiratory syncytial virus (RSV), an important determinant of disease in young children. We combine a dataset of county-level observations from the US with state-level observations from Mexico, spanning much of the global range of climatological conditions. Using a combination of nonlinear epidemic models with statistical techniques, we find consistent patterns of climate drivers at a continental scale explaining latitudinal differences in the dynamics and timing of local epidemics. Strikingly, estimated effects of precipitation and humidity on transmission mirror prior results for influenza. We couple our model with projections for future climate, to show that temperature-driven increases to humidity may lead to a northward shift in the dynamic patterns observed and that the likelihood of severe outbreaks of RSV hinges on projections for extreme rainfall
Hot Spine Loops and the Nature of a Late-Phase Solar Flare
The fan-spine magnetic topology is believed to be responsible for many
curious features in solar explosive events. A spine field line links distinct
flux domains, but direct observation of such feature has been rare. Here we
report a unique event observed by the Solar Dynamic Observatory where a set of
hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric
ribbon at one end and a remote brightening at the other. Magnetic field
extrapolation suggests these loops are partly tracer of the evolving spine
field line. Continuous slipping- and null-point-type reconnections were likely
at work, energizing the loop plasma and transferring magnetic flux within and
across the fan quasi-separatrix layer. We argue that the initial reconnection
is of the "breakout" type, which then transitioned to a more violent flare
reconnection with an eruption from the fan dome. Significant magnetic field
changes are expected and indeed ensued. This event also features an
extreme-ultraviolet (EUV) late phase, i.e. a delayed secondary emission peak in
warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of
large post-reconnection loops beside and above the compact fan, a direct
product of eruption in such topological settings. The long cooling time of the
large arcades contributes to the long delay; additional heating may also be
required. Our result demonstrates the critical nature of cross-scale magnetic
coupling - topological change in a sub-system may lead to explosions on a much
larger scale.Comment: Accepted for publication in ApJ. Animations linked from pd
- …
