2,276 research outputs found

    A profit model for spread trading with an application to energy futures

    Get PDF
    This paper proposes a profit model for spread trading by focusing on the stochastic movement of the price spread and its first hitting time probability density. The model is general in that it can be used for any financial instrument. The advantage of the model is that the profit from the trades can be easily calculated if the first hitting time probability density of the stochastic process is given. We then modify the profit model for a particular market, the energy futures market. It is shown that energy futures spreads are modeled by using a meanreverting process. Since the first hitting time probability density of a mean-reverting process is approximately known, the profit model for energy futures price spreads is given in a computable way by using the parameters of the process. Finally, we provide empirical evidence for spread trades of energy futures by employing historical prices of energy futures (WTI crude oil, heating oil, and natural gas futures) traded on the New York Mercantile Exchange. The results suggest that natural gas futures trading may be more profitable than WTI crude oil and heating oil due to its high volatility in addition to its long-term mean reversion, which offers supportive evidence of the model prediction. --futures spread trading,energy futures markets,mean-reverting process,first hitting,time probability density,profit model,WTI crude oil,heating oil,natural gas

    CVaR sensitivity with respect to tail thickness

    Get PDF
    We consider the sensitivity of conditional value-at-risk (CVaR) with respect to the tail index assuming regularly varying tails and exponential and faster-than-exponential tail decay for the return distribution. We compare it to the CVaR sensitivity with respect to the scale parameter for stable Paretian, the Student's t, and generalized Gaussian laws and discuss implications for the modeling of daily returns and marginal rebalancing decisions. Finally, we explore empirically the impact on the asymptotic variability of the CVaR estimator with daily returns which is a standard choice for the return frequency for risk estimation. --fat-tailed distributions,regularly varying tails,conditional value-at-risk,marginal rebalancing,asymptotic variability

    Another Look at the Ho-Lee Bond Option Pricing Model

    Full text link
    In this paper, we extend the classical Ho-Lee binomial term structure model to the case of time-dependent parameters and, as a result, resolve a drawback associated with the model. This is achieved with the introduction of a more flexible no-arbitrage condition in contrast to the one assumed in the Ho-Lee model

    Modeling catastrophe claims with left-truncated severity distributions (extended version)

    Get PDF
    In this paper, we present a procedure for consistent estimation of the severity and frequency distributions based on incomplete insurance data and demonstrate that ignoring the thresholds leads to a serious underestimation of the ruin probabilities. The event frequency is modelled with a non-homogeneous Poisson process with a sinusoidal intensity rate function. The choice of an adequate loss distribution is conducted via the in-sample goodness-of-fit procedures and forecasting, using classical and robust methodologies.Natural catastrophe; Property insurance; Loss distribution; Truncated data; Ruin probability;

    Bayesian inference for hedge funds with stable distribution of returns

    Get PDF
    Recently, a body of academic literature has focused on the area of stable distributions and their application potential for improving our understanding of the risk of hedge funds. At the same time, research has sprung up that applies standard Bayesian methods to hedge fund evaluation. Little or no academic attention has been paid to the combination of these two topics. In this paper, we consider Bayesian inference for alpha-stable distributions with particular regard to hedge fund performance and risk assessment. After constructing Bayesian estimators for alpha-stable distributions in the context of an ARMA-GARCH time series model with stable innovations, we compare our risk evaluation and prediction results to the predictions of several competing conditional and unconditional models that are estimated in both the frequentist and Bayesian setting. We find that the conditional Bayesian model with stable innovations has superior risk prediction capabilities compared with other approaches and, in particular, produced better risk forecasts of the abnormally large losses that some hedge funds sustained in the months of September and October 2008. --

    Fat-tailed models for risk estimation

    Get PDF
    In the post-crisis era, financial institutions seem to be more aware of the risks posed by extreme events. Even though there are attempts to adapt methodologies drawing from the vast academic literature on the topic, there is also skepticism that fat-tailed models are needed. In this paper, we address the common criticism and discuss three popular methods for extreme risk modeling based on full distribution modeling and and extreme value theory. --

    Tempered infinitely divisible distributions and processes

    Get PDF
    In this paper, we construct the new class of tempered infinitely divisible (TID) distributions. Taking into account the tempered stable distribution class, as introduced by in the seminal work of Rosinsky , a modification of the tempering function allows one to obtain suitable properties. In particular, TID distributions may have exponential moments of any order and conserve all proper properties of the Rosinski setting. Furthermore, we prove that the modified tempered stable distribution is TID and give some further parametric example. --stable distributions,tempered stable distributions,tempered infinitely divisible distributions,modified tempered stable distributions
    corecore