55 research outputs found

    The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications

    Get PDF
    [EN] Helicobacter pylori (H. pylori) is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss H. pylori colonization and invasion. Thereafter, we provide a survey of current curative options based on polypharmacy, looking at pharmacokinetics, pharmacodynamics and pharmaceutical microbiology concepts, in the battle against H. pylori infection.Miri, AH.; Kamankesh, M.; Llopis-Lorente, A.; Liu, C.; Wacker, MG.; Haririan, I.; Asadzadeh Aghdaei, H.... (2022). The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications. Frontiers in Pharmacology. 13:1-16. https://doi.org/10.3389/fphar.2022.9171841161

    Editorial – Polymeric Nanoparticles for Retinal Drug Delivery

    No full text
    This is an Editorial and does not have an abstract. Please download the PDF or view the article in HTML

    Numerical comparison and design of magnets arrays for particle separating, based on magnetophoresis

    Full text link
    Abstract In this paper, based on magnetophoresis, the effects of magnets arrays changings on particle tracing are analyzed. The changing of magnets arrays are included the changings of magnets dimensions and also the changing of the space between them. Magnets arrays with different styles, have generated dissimilar magnetic field. Hence, in some cases the magnetic force is stronger. In these cases, the manipulation on particles are done in less time. The importance of this problem is related to increase the throughput of the microsystem.To conquer to this challenge analytical methods (mathematical piecewise method) in 2D platform are used. The path of particles in microchannel are predicted. Then, the changings in magnets arrays (gap-dimension) are inserted. Lastly, the comparison of distance, velocity, and time to find out the proper style are done.The results shown that for the specific surface area (volume in 3D platform), there is a particular magnets dimension with a particular spacing between them (gap-dimension). Which has performed a maximum effects on microparticles. The simulations for five surface area S1 = 40000 μm2, S2 = 62500 μm2, S3 = 90000 μm2, S4 = 122500 μm2, and S5 = 160000 μm2 are proceed. The results are describes as the couple of gap-dimension which the gap is the space between magnets and the dimension is the intersection of the magnets and the channel. The results of (gap-dimension) for specific surface area are listed respectively as: (500 μm−107 μm), (575 μm−127 μm), (650 μm–146 μm), (725 μm−164 μm), and (800 μm − 183 μm). The efficiency and throughput in this points are 100 percent for micro device. Because all of the particle are captured in the less time.Using the proper gap-dimension for the magnets arrays is led to maximize the efficiency and throughput of the microsystem.</jats:p

    Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery

    No full text
    This study reports the fabrication of microneedles using computer numerical control (CNC) machining and micromolding for replicating dissolvable microneedles (DMNs) for drug delivery. Despite the ease of use and simple manufacturing by CNC, this method has not been extensively studied for the fabrication of microneedles. The master molds were fabricated using CNC machining; subsequently, DMNs embedded with fluorescent dye as a drug model were prepared using a hyaluronic acid (HA) and polyvinylpyrrolidone (PVP) solution in a rapid and comparatively simple micromolding process. The microneedles were evaluated for mechanical strength and penetration efficiency. The drug diffusion from DMNs was elucidated through confocal laser scanning microscopy (CLSM) imaging. The results show that fabricated DMNs are mechanically strong enough to penetrate the skin dermis layer and deliver their therapeutic cargo. In conclusion, CNC machining can provide rapid and low-cost fabrication of master molds, facilitating DMNs production for transdermal drug delivery

    Polymer Ring Resonator with a Partially Tapered Waveguide for Biomedical Sensing: Computational Study

    No full text
    Ring resonators are well-known optical biosensors thanks to their relatively high Q-factor and sensitivity, in addition to their potential to be fabricated in large arrays with a small footprint. Here, we investigated the characteristics of a polymer ring resonator with a partially tapered waveguide for Biomedical Sensing. The goal is to develop a more sensitive biosensor with an improved figure of merit. The concept is more significant field interaction with the sample under test in tapered segments. Waveguide width is hereby gradually reduced to half. Sensitivity improves from 84.6 to 101.74 [nm/RIU] in a relatively small Q-factor reduction from 4.60 × 103 for a strip waveguide to 4.36 × 103 for a π/4 partially tapered one. After the study, the number of tapered parts from zero to fifteen, the obtained figure of merit improves from 497 for a strip ring to 565 for a π/4 tapered ring close to six tapered ones. Considering the fabrication process, the three-tapered one is suggested. The all-polymer material device provides advantages of a low-cost, disposable biosensor with roll-to-roll fabrication compatibility. This design can also be applied on silicon on isolator, or polymer on silicon-based devices, thereby taking advantage of a higher Q-factor and greater sensitivity.</jats:p

    Polymer Ring Resonator with a Partially Tapered Waveguide for Biomedical Sensing: Computational Study

    No full text
    Ring resonators are well-known optical biosensors thanks to their relatively high Q-factor and sensitivity, in addition to their potential to be fabricated in large arrays with a small footprint. Here, we investigated the characteristics of a polymer ring resonator with a partially tapered waveguide for Biomedical Sensing. The goal is to develop a more sensitive biosensor with an improved figure of merit. The concept is more significant field interaction with the sample under test in tapered segments. Waveguide width is hereby gradually reduced to half. Sensitivity improves from 84.6 to 101.74 [nm/RIU] in a relatively small Q-factor reduction from 4.60 × 103 for a strip waveguide to 4.36 × 103 for a π/4 partially tapered one. After the study, the number of tapered parts from zero to fifteen, the obtained figure of merit improves from 497 for a strip ring to 565 for a π/4 tapered ring close to six tapered ones. Considering the fabrication process, the three-tapered one is suggested. The all-polymer material device provides advantages of a low-cost, disposable biosensor with roll-to-roll fabrication compatibility. This design can also be applied on silicon on isolator, or polymer on silicon-based devices, thereby taking advantage of a higher Q-factor and greater sensitivity

    Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    No full text
    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small ubiquitin-like modifier (SUMO) protein. Although this system yielded peptides of high purity with no residual amino acids after cleavage of the SUMO fusion protein, the yield after purification was generally low (~1 mg/L bacterial culture) as compared to other peptides and proteins produced with the same method and under the same conditions. Results: The aim of this study is to understand the underlying mechanisms causing the low yield of this recombinant peptide in E. coli and to optimize both production and purification of recombinant SA2 peptides. It was demonstrated that by simply changing the medium to a well-balanced auto-induction medium the yield of recombinant production was augmented (~4 fold). Moreover, it was demonstrated that self-assembly of SUMO-SA2 fusion proteins caused the low peptide yields after purification. By replacing the second IMAC purification step with a selective precipitation step, peptide yields could be increased approx. 3 fold. With these optimizations in place the overall yield of purified SA2 peptide increased with 12-fold. Conclusion: Premature self-assembly of the SUMO-SA2 fusion construct interfered with proper purification of the SA2 peptide, resulting in low yields of purified peptide and this could be prevented by changing the mode of purification. These findings are important when setting up purification schemes for other self-assembling peptides with the use of a SUMO fusion construct

    Social Internet of Things: vision, challenges, and trends

    No full text
    Abstract IoT describes a new world of billions of objects that intelligently communicate and interact with each other. One of the important areas in this field is a new paradigm-Social Internet of Things (SIoT), a new concept of combining social networks with IoT. SIoT is an imitation of social networks between humans and objects. Objects like humans are considered intelligent and social. They create their social network to achieve their common goals, such as improving functionality, performance, and efficiency and satisfying their required services. Our article’s primary purpose is to present a comprehensive review article from the SIoT system to analyze and evaluate the recent works done in this area. Therefore, our study concentrated on the main components of the SIoT (Architecture, Relation Management, Trust Management, web services, and information), features, parameters, and challenges. To gather enough information for better analysis, we have reviewed the articles published between 2011 and December 2019. The strengths and weaknesses of each article are examined, and effective evaluation parameters, approaches, and the most used simulation tools in this field are discussed. For this purpose, we provide a scientific taxonomy for the final SIoT structure based on the academic contributions we have studied. Ultimately we observed that the evaluation parameters are different in each element of the SIoT ecosystem, for example for Relation Management, scalability 29% and navigability 22% are the most concentrated metrics, in Trust Management, accuracy 25%, and resiliency 25% is more important, in the web service process, time 23% and scalability 16% are the most mentioned and finally in information processing, throughput and time 25% are the most investigated factor. Also, Java-based tools like Eclipse has the most percentage in simulation tools in reviewed literature with 28%, and SWIM has 13% of usage for simulation.</jats:p
    corecore