1,907 research outputs found
Smartphone picture organization: a hierarchical approach
We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin
All the people around me: face discovery in egocentric photo-streams
Given an unconstrained stream of images captured by a wearable photo-camera
(2fpm), we propose an unsupervised bottom-up approach for automatic clustering
appearing faces into the individual identities present in these data. The
problem is challenging since images are acquired under real world conditions;
hence the visible appearance of the people in the images undergoes intensive
variations. Our proposed pipeline consists of first arranging the photo-stream
into events, later, localizing the appearance of multiple people in them, and
finally, grouping various appearances of the same person across different
events. Experimental results performed on a dataset acquired by wearing a
photo-camera during one month, demonstrate the effectiveness of the proposed
approach for the considered purpose.Comment: 5 pages, 3 figures, accepted in IEEE International Conference on
Image Processing (ICIP 2017
Distributed House-Hunting in Ant Colonies
We introduce the study of the ant colony house-hunting problem from a
distributed computing perspective. When an ant colony's nest becomes unsuitable
due to size constraints or damage, the colony must relocate to a new nest. The
task of identifying and evaluating the quality of potential new nests is
distributed among all ants. The ants must additionally reach consensus on a
final nest choice and the full colony must be transported to this single new
nest. Our goal is to use tools and techniques from distributed computing theory
in order to gain insight into the house-hunting process.
We develop a formal model for the house-hunting problem inspired by the
behavior of the Temnothorax genus of ants. We then show a \Omega(log n) lower
bound on the time for all n ants to agree on one of k candidate nests. We also
present two algorithms that solve the house-hunting problem in our model. The
first algorithm solves the problem in optimal O(log n) time but exhibits some
features not characteristic of natural ant behavior. The second algorithm runs
in O(k log n) time and uses an extremely simple and natural rule for each ant
to decide on the new nest.Comment: To appear in PODC 201
Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication
We consider the ANTS problem [Feinerman et al.] in which a group of agents
collaboratively search for a target in a two-dimensional plane. Because this
problem is inspired by the behavior of biological species, we argue that in
addition to studying the {\em time complexity} of solutions it is also
important to study the {\em selection complexity}, a measure of how likely a
given algorithmic strategy is to arise in nature due to selective pressures. In
more detail, we propose a new selection complexity metric , defined for
algorithm such that , where is
the number of memory bits used by each agent and bounds the fineness of
available probabilities (agents use probabilities of at least ). In
this paper, we study the trade-off between the standard performance metric of
speed-up, which measures how the expected time to find the target improves with
, and our new selection metric.
In particular, consider agents searching for a treasure located at
(unknown) distance from the origin (where is sub-exponential in ).
For this problem, we identify as a crucial threshold for our
selection complexity metric. We first prove a new upper bound that achieves a
near-optimal speed-up of for . In particular, for , the speed-up is
asymptotically optimal. By comparison, the existing results for this problem
[Feinerman et al.] that achieve similar speed-up require . We then show that this threshold is tight by describing a
lower bound showing that if , then
with high probability the target is not found within moves per
agent. Hence, there is a sizable gap to the straightforward
lower bound in this setting.Comment: appears in PODC 201
- …
