1,907 research outputs found

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    All the people around me: face discovery in egocentric photo-streams

    Full text link
    Given an unconstrained stream of images captured by a wearable photo-camera (2fpm), we propose an unsupervised bottom-up approach for automatic clustering appearing faces into the individual identities present in these data. The problem is challenging since images are acquired under real world conditions; hence the visible appearance of the people in the images undergoes intensive variations. Our proposed pipeline consists of first arranging the photo-stream into events, later, localizing the appearance of multiple people in them, and finally, grouping various appearances of the same person across different events. Experimental results performed on a dataset acquired by wearing a photo-camera during one month, demonstrate the effectiveness of the proposed approach for the considered purpose.Comment: 5 pages, 3 figures, accepted in IEEE International Conference on Image Processing (ICIP 2017

    Distributed House-Hunting in Ant Colonies

    Full text link
    We introduce the study of the ant colony house-hunting problem from a distributed computing perspective. When an ant colony's nest becomes unsuitable due to size constraints or damage, the colony must relocate to a new nest. The task of identifying and evaluating the quality of potential new nests is distributed among all ants. The ants must additionally reach consensus on a final nest choice and the full colony must be transported to this single new nest. Our goal is to use tools and techniques from distributed computing theory in order to gain insight into the house-hunting process. We develop a formal model for the house-hunting problem inspired by the behavior of the Temnothorax genus of ants. We then show a \Omega(log n) lower bound on the time for all n ants to agree on one of k candidate nests. We also present two algorithms that solve the house-hunting problem in our model. The first algorithm solves the problem in optimal O(log n) time but exhibits some features not characteristic of natural ant behavior. The second algorithm runs in O(k log n) time and uses an extremely simple and natural rule for each ant to decide on the new nest.Comment: To appear in PODC 201

    Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication

    Get PDF
    We consider the ANTS problem [Feinerman et al.] in which a group of agents collaboratively search for a target in a two-dimensional plane. Because this problem is inspired by the behavior of biological species, we argue that in addition to studying the {\em time complexity} of solutions it is also important to study the {\em selection complexity}, a measure of how likely a given algorithmic strategy is to arise in nature due to selective pressures. In more detail, we propose a new selection complexity metric χ\chi, defined for algorithm A{\cal A} such that χ(A)=b+log\chi({\cal A}) = b + \log \ell, where bb is the number of memory bits used by each agent and \ell bounds the fineness of available probabilities (agents use probabilities of at least 1/21/2^\ell). In this paper, we study the trade-off between the standard performance metric of speed-up, which measures how the expected time to find the target improves with nn, and our new selection metric. In particular, consider nn agents searching for a treasure located at (unknown) distance DD from the origin (where nn is sub-exponential in DD). For this problem, we identify loglogD\log \log D as a crucial threshold for our selection complexity metric. We first prove a new upper bound that achieves a near-optimal speed-up of (D2/n+D)2O()(D^2/n +D) \cdot 2^{O(\ell)} for χ(A)3loglogD+O(1)\chi({\cal A}) \leq 3 \log \log D + O(1). In particular, for O(1)\ell \in O(1), the speed-up is asymptotically optimal. By comparison, the existing results for this problem [Feinerman et al.] that achieve similar speed-up require χ(A)=Ω(logD)\chi({\cal A}) = \Omega(\log D). We then show that this threshold is tight by describing a lower bound showing that if χ(A)<loglogDω(1)\chi({\cal A}) < \log \log D - \omega(1), then with high probability the target is not found within D2o(1)D^{2-o(1)} moves per agent. Hence, there is a sizable gap to the straightforward Ω(D2/n+D)\Omega(D^2/n + D) lower bound in this setting.Comment: appears in PODC 201
    corecore