1,122 research outputs found
Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber
We experimentally demonstrate frequency translation of a nonclassical optical
field via the Bragg scattering four-wave mixing process in a photonic crystal
fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF
enable efficient translation between photon channels within the visible
to-near-infrared spectral range, useful in quantum networks. Heralded single
photons at 683 nm were translated to 659 nm with an efficiency of percent. Second-order correlation measurements on the 683-nm and 659-nm
fields yielded and respectively, showing the nonclassical nature of both fields.Comment: 5 pages, 3 figure
Self-excited Oscillations of Charge-Spin Accumulation Due to Single-electron Tunneling
We theoretically study electronic transport through a layer of quantum dots
connecting two metallic leads. By the inclusion of an inductor in series with
the junction, we show that steady electronic transport in such a system may be
unstable with respect to temporal oscillations caused by an interplay between
the Coulomb blockade of tunneling and spin accumulation in the dots. When this
instability occurs, a new stable regime is reached, where the average spin and
charge in the dots oscillate periodically in time. The frequency of these
oscillations is typically of the order of 1GHz for realistic values of the
junction parameters
Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices
We show that the recent experimental realization of spin-orbit coupling in
ultracold atomic gases can be used to study different types of spin spiral
order and resulting multiferroic effects. Spin-orbit coupling in optical
lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which
is essential for spin spiral order. By taking into account spin-orbit coupling
and an external Zeeman field, we derive an effective spin model in the Mott
insulator regime at half filling and demonstrate that the DM interaction in
optical lattices can be made extremely strong with realistic experimental
parameters. The rich finite temperature phase diagrams of the effective spin
models for fermions and bosons are obtained via classical Monte Carlo
simulations.Comment: 7 pages, 5 figure
Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics
An effective formalism is developed to handle decaying two-state systems.
Herewith, observables of such systems can be described by a single operator in
the Heisenberg picture. This allows for using the usual framework in quantum
information theory and, hence, to enlighten the quantum feature of such systems
compared to non-decaying systems. We apply it to systems in high energy
physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss
the entropic Heisenberg uncertainty relation for observables measured at
different times at accelerator facilities including the effect of CP violation,
i.e. the imbalance of matter and antimatter. An operator-form of Bell
inequalities for systems in high energy physics is presented, i.e. a
Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page
Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides
All-optical signal processing is envisioned as an approach to dramatically
decrease power consumption and speed up performance of next-generation optical
telecommunications networks. Nonlinear optical effects, such as four-wave
mixing (FWM) and parametric gain, have long been explored to realize
all-optical functions in glass fibers. An alternative approach is to employ
nanoscale engineering of silicon waveguides to enhance the optical
nonlinearities by up to five orders of magnitude, enabling integrated
chip-scale all-optical signal processing. Previously, strong two-photon
absorption (TPA) of the telecom-band pump has been a fundamental and
unavoidable obstacle, limiting parametric gain to values on the order of a few
dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier
exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near
one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic
TPA-related absorption vanishes. This gain is high enough to compensate all
insertion losses, resulting in 13 dB net off-chip amplification. Furthermore,
dispersion engineering dramatically increases the gain bandwidth to more than
220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its
significant relevance to all-optical signal processing, the broadband
parametric gain also facilitates the simultaneous generation of multiple
on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range.
Together, these results provide a foundation for the construction of
silicon-based room-temperature mid-IR light sources including tunable
chip-scale parametric oscillators, optical frequency combs, and supercontinuum
generators
Generation of sequence-specific, high affinity anti-DNA antibodies.
By taking advantage of the extreme stability of a protein-DNA complex, we have obtained two highly specific monoclonal antibodies against a predetermined palindromic DNA sequence corresponding to the binding site of the E2 transcriptional regulator of the human papillomavirus (HPV-16). The purified univalent antibody fragments bind to a double-stranded DNA oligonucleotide corresponding to the E2 binding site in solution with dissociation constants in the low and subnanomolar range. This affinity matches that of the natural DNA binding domain and is severalfold higher than the affinity of a homologous bovine E2 C-terminal domain (BPV-1) for the same DNA. These antibodies discriminate effectively among a number of double- and single-stranded synthetic DNAs with factors ranging from 125- to 20,000-fold the dissociation constant of the specific DNA sequence used in the immunogenic protein-DNA complex. Moreover, they are capable of fine specificity tuning, since they both bind less tightly to another HPV-16 E2 binding site, differing in only 1 base pair in a noncontact flexible region. Beyond the relevance of obtaining a specific anti-DNA response, these results provide a first glance at how DNA as an antigen is recognized specifically by an antibody. The accuracy of the spectroscopic method used for the binding analysis suggests that a detailed mechanistic analysis is attainable.Fil: Cerutti, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Centeno, Juan M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Goldbaum, Fernando Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: de Prat Gay, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration
International audienceWe report data on the isotopic composition of cadmium, copper, iron, lead, zinc, and molybdenum at the GEOTRACES IC1 BATS Atlantic intercalibration station. In general, the between lab and within-lab precisions are adequate to resolve global gradients and vertical gradients at this station for Cd, Fe, Pb, and Zn. Cd and Zn isotopes show clear variations in the upper water column and more subtle variations in the deep water; these variations are attributable, in part, to progressive mass fractionation of isotopes by Rayleigh distillation from biogenic uptake and/or adsorption. Fe isotope variability is attributed to heavier crustal dust and hydrothermal sources and light Fe from reducing sediments. Pb isotope variability results from temporal changes in anthropogenic source isotopic compositions and the relative contributions of U.S. and European Pb sources. Cu and Mo isotope variability is more subtle and close to analytical precision. Although the present situation is adequate for proceeding with GEOTRACES, it should be possible to improve the within-lab and between-lab precisions for some of these properties
Tapentadol Prolonged Release for Long-Term Treatment of Pain in Children
Purpose: Investigation of the efficacy and safety of tapentadol prolonged release (PR) compared with morphine PR for long-term treatment of pain in children. /
Patients and Methods: Children aged 6 to < 18 years requiring long-term treatment with opioids were studied in a 12-month, 2-part, multi-center trial: Part 1, 14-day open-label, randomized, active-controlled, parallel group non-inferiority trial comparing twice daily tapentadol PR with morphine PR; Part 2, open-label treatment with tapentadol PR for up to 12 months or no treatment “safety observation period”. Pain intensity was rated with visual analogue scale or Faces Pain Scale-Revised, and non-inferiority was assessed by comparison of “treatment responders” (those completing the 14-day treatment period and showing pre-defined changes in pain rating) in each group. /
Results: Twenty-three of 48 centers enrolled 73 patients. In Part 1, 45 and 24 patients received tapentadol or morphine, respectively, of which 40 and 22 completed 14-day treatment. In Part 2, thirty-six and 58 patients entered the tapentadol PR or observation periods, respectively, with 20/36 completing at least 12 weeks of treatment; 10 of the 36 had received morphine in Part 1. Forty-four of the 58 patients in the safety observation period had received tapentadol. Tapentadol PR was non-inferior to morphine PR (lower limit of confidence interval above negative non-inferiority margin of − 0.2) in Part 1. Rates of adverse events were as expected with nausea (22.2%) and constipation (15.6%) in the tapentadol PR group, and with vomiting (33.3%), nausea and constipation (each 16.7%) in the morphine PR group. No new safety issues were identified; the safety profile of tapentadol over the 12 months treatment and observation periods was comparable to that established in subjects > 18 years old. /
Conclusion: Tapentadol PR was well tolerated and equivalent to morphine PR for both efficacy and safety in children (6 to < 18 years old) requiring long-term treatment with opioids
Treatment of synthetic textile wastewater containing dye mixtures with microcosms
The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH4-N), and nitrate-nitrogen (NO3-N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development
- …
