958 research outputs found
Evolution from a nodeless gap to d(x2-y2) form in underdoped La(2-x)SrxCuO4
Using angle-resolved photoemission (ARPES), it is revealed that the
low-energy electronic excitation spectra of highly underdoped superconducting
and non-superconducting La(2-x)SrxCuO4 cuprates are gapped along the entire
underlying Fermi surface at low temperatures. We show how the gap function
evolves to a d(x2-y2) form as increasing temperature or doping, consistent with
the vast majority of ARPES studies of cuprates. Our results provide essential
information for uncovering the symmetry of the order parameter(s) in strongly
underdoped cuprates, which is a prerequisite for understanding the pairing
mechanism and how superconductivity emerges from a Mott insulator.Comment: 5 pages, 4 figure
Charge density waves enhance the electronic noise of manganites
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin
films in the temperature range from room temperature to 160 K are reported. It
is shown that both the broadband 1/f noise properties and the dependence of
resistance on electric field are consistent with the idea of a collective
electrical transport, as in the classical model of sliding charge density
waves. On the other hand, the observations cannot be reconciled with standard
models of charge ordering and charge melting. Methodologically, it is proposed
to consider noise-spectra analysis as a unique tool for the identification of
the transport mechanism in such highly correlated systems. On the basis of the
results, the electrical transport is envisaged as one of the most effective
ways to understand the nature of the insulating, charge-modulated ground states
in manganites.Comment: 6 two-column pages, 5 figure
Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES
Temperature dependence of the electronic structure of SmB6 is studied by
high-resolution ARPES down to 1 K. We demonstrate that there is no essential
difference for the dispersions of the surface states below and above the
resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface
states indicate that the quasi-particle scattering rate increases linearly as a
function of temperature and binding energy, which differs from Fermi-Liquid
behavior. Most intriguingly, we observe that the hybridization between the d
and f states builds gradually over a wide temperature region (30 K < T < 110
K). The surface states appear when the hybridization starts to develop. Our
detailed temperature-dependence results give a complete interpretation of the
exotic resistivity result of SmB6, as well as the discrepancies among
experimental results concerning the temperature regions in which the
topological surface states emerge and the Kondo gap opens, and give new
insights into the exotic Kondo crossover and its relationship with the
topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure
Observation of Weyl nodes in robust type-II Weyl semimetal WP2
Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described
by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs
violates Lorentz invariance and the Weyl cones in the momentum space are
tilted. Since it was proposed that type-II Weyl fermions could emerge from
(W,Mo)Te2 and (W,Mo)P2 families of materials, a large numbers of experiments
have been dedicated to unveil the possible manifestation of type-II WSM, e.g.
the surface-state Fermi arcs. However, the interpretations of the experimental
results are very controversial. Here, using angle-resolved photoemission
spectroscopy supported by the first-principles calculations, we probe the
tilted Weyl cone bands in the bulk electronic structure of WP2 directly, which
are at the origin of Fermi arcs at the surfaces and transport properties
related to the chiral anomaly in type-II WSMs. Our results ascertain that due
to the spin-orbit coupling the Weyl nodes originate from the splitting of
4-fold degenerate band-crossing points with Chern numbers C = 2 induced by
the crystal symmetries of WP2, which is unique among all the discovered WSMs.
Our finding also provides a guiding line to observe the chiral anomaly which
could manifest in novel transport properties.Comment: 13 pages, 3 figure
Observation of Wannier-Stark localization at the surface of BaTiO films by photoemission
Observation of Bloch oscillations and Wannier-Stark localization of charge
carriers is typically impossible in single-crystals, because an electric field
higher than the breakdown voltage is required. In BaTiO however, high
intrinsic electric fields are present due to its ferroelectric properties. With
angle-resolved photoemission we directly probe the Wannier-Stark localized
surface states of the BaTiO film-vacuum interface and show that this effect
extends to thin SrTiO overlayers. The electrons are found to be localized
along the in-plane polarization direction of the BaTiO film
Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO2 thin films
Engineering the electronic band structure of two-dimensional electron liquids
(2DELs) confined at the surface or interface of transition metal oxides is key
to unlocking their full potential. Here we describe a new approach to tailoring
the electronic structure of an oxide surface 2DEL demonstrating the lateral
modulation of electronic states with atomic scale precision on an unprecedented
length scale comparable to the Fermi wavelength. To this end, we use pulsed
laser deposition to grow anatase TiO2 films terminated by a (1 x 4) in-plane
surface reconstruction. Employing photo-stimulated chemical surface doping we
induce 2DELs with tunable carrier densities that are confined within a few TiO2
layers below the surface. Subsequent in-situ angle resolved photoemission
experiments demonstrate that the (1 x 4) surface reconstruction provides a
periodic lateral perturbation of the electron liquid. This causes strong
backfolding of the electronic bands, opening of unidirectional gaps and a
saddle point singularity in the density of states near the chemical potential
- …
