707 research outputs found
Photodoping and in-gap interface states across the metal-insulator transition in LaAlO3/SrTiO3 heterostructures
By using scanning tunneling microscopy/spectroscopy we show that the interface between LaAlO3 and SrTiO3 band insulators is characterized by in-gap interface states. These features were observed in insulating as well as conducting LaAlO3/SrTiO3 bilayers. The data show how the interface density of states evolves across the insulating to metal transition, demonstrating that nanoscale electronic inhomogeneities in the system are induced by spatially localized electrons
Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures
The theoretical description of the thermodynamic properties of
ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale
is proposed. Their superconducting characteristics strongly depend on the
mutual orientation of the ferromagnetic layers. In addition, depending on the
transparency of S/F interfaces, the superconducting critical temperature can
exhibit four different types of dependences on the thickness of the F-layer.
The obtained results permit to give some practical recommendations for the
spin-valve effect experimental observation. In this spin-valve sandwich, we
also expect a spontaneous transition from parallel to anti-parallel
ferromagnetic moment orientation, due to the gain in the superconducting
condensation energy.Comment: 20 pages, 5 figures, submitted to PR
Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization
We calculate the dc Josephson current for two types of
superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first
type is a S/F/S junction. On the basis of the Eilenberger equation, the
Josephson current is calculated for an arbitrary impurity concentration. If the expression for the Josephson critical current is reduced
to that which can be obtained from the Usadel equation ( is the exchange
energy, is the momentum relaxation time). In the opposite limit
the superconducting condensate oscillates with period and
penetrates into the F region over distances of the order of the mean free path
. For this kind of junctions we also calculate in the case when the F
layer presents a nonhomogeneous (spiral) magnetic structure with the period
. It is shown that for not too low temperatures, the -state which
occurs in the case of a homogeneous magnetization (Q=0) may disappear even at
small values of . In this nonhomogeneous case, the superconducting
condensate has a nonzero triplet component and can penetrate into the F layer
over a long distance of the order of . The junction
of the second type consists of two S/F bilayers separated by a thin insulating
film. It is shown that the critical Josephson current depends on the
relative orientation of the effective exchange field of the bilayers. In
the case of an antiparallel orientation, increases with increasing .
We establish also that in the F film deposited on a superconductor, the
Meissner current created by the internal magnetic field may be both diamagnetic
or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.
Modeling electrolytically top gated graphene
We investigate doping of a single-layer graphene in the presence of
electrolytic top gating. The interfacial phenomena is modeled using a modified
Poisson-Boltzmann equation for an aqueous solution of simple salt. We
demonstrate both the sensitivity of graphene's doping levels to the salt
concentration and the importance of quantum capacitance that arises due to the
smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters
for a special issue related to the NGC 2009 conference
(http://asdn.net/ngc2009/index.shtml
Cryptoferromagnetic state in superconductor-ferromagnet multilayers
We study a possibility of a non-homogeneous magnetic order
(cryptoferromagnetic state) in heterostructures consisting of a bulk
superconductor and a ferromagnetic thin layer that can be due to the influence
of the superconductor. The exchange field in the ferromagnet may be strong and
exceed the inverse mean free time. A new approach based on solving the
Eilenberger equations in the ferromagnet and the Usadel equations in the
superconductor is developed. We derive a phase diagram between the
cryptoferromagnetic and ferromagnetic states and discuss the possibility of an
experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur
Superconductor-Ferromagnet Bi-Layers: a Comparison of s-Wave and d-Wave Order Parameters
We study superconductor-ferromagnet bi-layers, not only for s-wave but also
for d-wave superconductors. We observe oscillations of the critical temperature
when varying the thickness of the ferromagnetic layer for both s-wave and
d-wave superconductors. However, for a rotated d-wave order parameter the
critical temperature differs considerably from that for the unrotated case. In
addition we calculate the density of states for different thicknesses of the
ferromagnetic layer; the results reflect the oscillatory behaviour of the
superconducting correlations.Comment: 11 pages, 5 figures, accepted for publication in J. Phys.: Condens.
Matte
Proximity effects and characteristic lengths in ferromagnet-superconductor structures
We present an extensive theoretical investigation of the proximity effects
that occur in Ferromagnet/Superconductor () systems. We use a numerical
method to solve self consistently the Bogoliubov-de Gennes equations in the
continuum. We obtain the pair amplitude and the local density of states (DOS),
and use these results to extract the relevant lengths characterizing the
leakage of superconductivity into the magnet and to study spin splitting into
the superconductor. These phenomena are investigated as a function of
parameters such as temperature, magnet polarization, interfacial scattering,
sample size and Fermi wavevector mismatch, all of which turn out to have
important influence on the results. These comprehensive results should help
characterize and analyze future data and are shown to be in agreement with
existing experiments.Comment: 24 pages, including 26 figure
Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3 / YBa2Cu3O7 superlattices
We study the interplay between magnetism and superconductivity in high
quality YBa2Cu3O7 (YBCO) / La0.7Ca0.3MnO3(LCMO)superlattices. We find evidence
for the YBCO superconductivity depression in presence of the LCMO layers. We
show that due to its short coherence length superconductivity survives in the
YBCO down to much smaller thickness in presence of the magnetic layer than in
low Tc superconductors. We also find that for a fixed thickness of the
superconducting layer, superconductivity is depressed over a thickness interval
of the magnetic layer in the 100 nm range. This is a much longer length scale
than that predicted by the theory of ferromagnetic/superconducting proximity
effect.Comment: 10 pages + 5 figures, submitted to Phys. Rev.
Energy and symmetry of excitations in undoped layered cuprates measured by Cu resonant inelastic x-ray scattering
We measured high resolution Cu edge resonant inelastic x-ray scattering
(RIXS) of the undoped cuprates LaCuO, SrCuOCl, CaCuO
and NdBaCuO. The dominant spectral features were assigned to
excitations and we extensively studied their polarization and scattering
geometry dependence. In a pure ionic picture, we calculated the theoretical
cross sections for those excitations and used them to fit the experimental data
with excellent agreement. By doing so, we were able to determine the energy and
symmetry of Cu-3 states for the four systems with unprecedented accuracy and
confidence. The values of the effective parameters could be obtained for the
single ion crystal field model but not for a simple two-dimensional cluster
model. The firm experimental assessment of excitation energies carries
important consequences for the physics of high superconductors. On one
hand, having found that the minimum energy of orbital excitation is always
eV, i.e., well above the mid-infrared spectral range, leaves to
magnetic excitations (up to 300 meV) a major role in Cooper pairing in
cuprates. On the other hand, it has become possible to study quantitatively the
effective influence of excitations on the superconducting gap in cuprates.Comment: 22 pages, 11 figures, 1 tabl
Local density of states in superconductor-strong ferromagnet structures
We study the dependence of the local density of states (LDOS) on coordinates
for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming
that the exchange energy h in the ferromagnet is sufficiently large: where is the elastic relaxation time. This limit cannot be
described by the Usadel equation and we solve the more general Eilenberger
equation. We demonstrate that, in the main approximation in the parameter , the proximity effect does not lead to a modification of the LDOS
in the S/F system and a non-trivial dependence on coordinates shows up in next
orders in In the S/F/S sandwich the correction to the LDOS is
nonzero in the main approximation and depends on the phase difference between
the superconductors. We also calculate the superconducting critical temperature
for the bilayered system and show that it does not depend on the
exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure
- …
