707 research outputs found

    Photodoping and in-gap interface states across the metal-insulator transition in LaAlO3/SrTiO3 heterostructures

    Get PDF
    By using scanning tunneling microscopy/spectroscopy we show that the interface between LaAlO3 and SrTiO3 band insulators is characterized by in-gap interface states. These features were observed in insulating as well as conducting LaAlO3/SrTiO3 bilayers. The data show how the interface density of states evolves across the insulating to metal transition, demonstrating that nanoscale electronic inhomogeneities in the system are induced by spatially localized electrons

    Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures

    Full text link
    The theoretical description of the thermodynamic properties of ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale is proposed. Their superconducting characteristics strongly depend on the mutual orientation of the ferromagnetic layers. In addition, depending on the transparency of S/F interfaces, the superconducting critical temperature can exhibit four different types of dependences on the thickness of the F-layer. The obtained results permit to give some practical recommendations for the spin-valve effect experimental observation. In this spin-valve sandwich, we also expect a spontaneous transition from parallel to anti-parallel ferromagnetic moment orientation, due to the gain in the superconducting condensation energy.Comment: 20 pages, 5 figures, submitted to PR

    Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization

    Full text link
    We calculate the dc Josephson current IJI_J for two types of superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the Josephson current is calculated for an arbitrary impurity concentration. If hτ1% h\tau\ll1 the expression for the Josephson critical current IcI_c is reduced to that which can be obtained from the Usadel equation (hh is the exchange energy, τ\tau is the momentum relaxation time). In the opposite limit hτ1h\tau\gg1 the superconducting condensate oscillates with period % v_F/h and penetrates into the F region over distances of the order of the mean free path ll. For this kind of junctions we also calculate IJI_J in the case when the F layer presents a nonhomogeneous (spiral) magnetic structure with the period 2π/Q2\pi /Q. It is shown that for not too low temperatures, the π\pi-state which occurs in the case of a homogeneous magnetization (Q=0) may disappear even at small values of QQ. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can penetrate into the F layer over a long distance of the order of ξT=\xi_{T}=% \sqrt{D/2\pi T}. The junction of the second type consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current IcI_{c} depends on the relative orientation of the effective exchange field hh of the bilayers. In the case of an antiparallel orientation, IcI_{c} increases with increasing hh. We establish also that in the F film deposited on a superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.

    Modeling electrolytically top gated graphene

    Get PDF
    We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomena is modeled using a modified Poisson-Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene's doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters for a special issue related to the NGC 2009 conference (http://asdn.net/ngc2009/index.shtml

    Cryptoferromagnetic state in superconductor-ferromagnet multilayers

    Full text link
    We study a possibility of a non-homogeneous magnetic order (cryptoferromagnetic state) in heterostructures consisting of a bulk superconductor and a ferromagnetic thin layer that can be due to the influence of the superconductor. The exchange field in the ferromagnet may be strong and exceed the inverse mean free time. A new approach based on solving the Eilenberger equations in the ferromagnet and the Usadel equations in the superconductor is developed. We derive a phase diagram between the cryptoferromagnetic and ferromagnetic states and discuss the possibility of an experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur

    Superconductor-Ferromagnet Bi-Layers: a Comparison of s-Wave and d-Wave Order Parameters

    Get PDF
    We study superconductor-ferromagnet bi-layers, not only for s-wave but also for d-wave superconductors. We observe oscillations of the critical temperature when varying the thickness of the ferromagnetic layer for both s-wave and d-wave superconductors. However, for a rotated d-wave order parameter the critical temperature differs considerably from that for the unrotated case. In addition we calculate the density of states for different thicknesses of the ferromagnetic layer; the results reflect the oscillatory behaviour of the superconducting correlations.Comment: 11 pages, 5 figures, accepted for publication in J. Phys.: Condens. Matte

    Proximity effects and characteristic lengths in ferromagnet-superconductor structures

    Full text link
    We present an extensive theoretical investigation of the proximity effects that occur in Ferromagnet/Superconductor (F/SF/S) systems. We use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. We obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing the leakage of superconductivity into the magnet and to study spin splitting into the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wavevector mismatch, all of which turn out to have important influence on the results. These comprehensive results should help characterize and analyze future data and are shown to be in agreement with existing experiments.Comment: 24 pages, including 26 figure

    Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3 / YBa2Cu3O7 superlattices

    Get PDF
    We study the interplay between magnetism and superconductivity in high quality YBa2Cu3O7 (YBCO) / La0.7Ca0.3MnO3(LCMO)superlattices. We find evidence for the YBCO superconductivity depression in presence of the LCMO layers. We show that due to its short coherence length superconductivity survives in the YBCO down to much smaller thickness in presence of the magnetic layer than in low Tc superconductors. We also find that for a fixed thickness of the superconducting layer, superconductivity is depressed over a thickness interval of the magnetic layer in the 100 nm range. This is a much longer length scale than that predicted by the theory of ferromagnetic/superconducting proximity effect.Comment: 10 pages + 5 figures, submitted to Phys. Rev.

    Energy and symmetry of dddd excitations in undoped layered cuprates measured by Cu L3L_3 resonant inelastic x-ray scattering

    Get PDF
    We measured high resolution Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS) of the undoped cuprates La2_2CuO4_4, Sr2_2CuO2_2Cl2_2, CaCuO2_2 and NdBa2_2Cu3_3O6_6. The dominant spectral features were assigned to dddd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used them to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3dd states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dddd excitation energies carries important consequences for the physics of high TcT_c superconductors. On one hand, having found that the minimum energy of orbital excitation is always 1.4\geq 1.4 eV, i.e., well above the mid-infrared spectral range, leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dddd excitations on the superconducting gap in cuprates.Comment: 22 pages, 11 figures, 1 tabl

    Local density of states in superconductor-strong ferromagnet structures

    Full text link
    We study the dependence of the local density of states (LDOS) on coordinates for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming that the exchange energy h in the ferromagnet is sufficiently large: >>1,% h\tau >>1, where τ\tau is the elastic relaxation time. This limit cannot be described by the Usadel equation and we solve the more general Eilenberger equation. We demonstrate that, in the main approximation in the parameter (hτ)1% (h\tau)^{-1}, the proximity effect does not lead to a modification of the LDOS in the S/F system and a non-trivial dependence on coordinates shows up in next orders in (hτ)1.(h\tau) ^{-1}. In the S/F/S sandwich the correction to the LDOS is nonzero in the main approximation and depends on the phase difference between the superconductors. We also calculate the superconducting critical temperature TcT_{c} for the bilayered system and show that it does not depend on the exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure
    corecore