373 research outputs found

    High-peak-power pulse generation from a monolithic master oscillator power amplifier at 1.5 μm

    Get PDF
    We present an experimental study on the generation of high-peak-power short optical pulses from a fully integrated master-oscillator power-amplifier emitting at 1.5 μm. High-peak-power (2.7 W) optical pulses with short duration (100 ps) have been generated by gain switching the master oscillator under optimized driving conditions. The static and dynamic characteristics of the device have been studied as a function of the driving conditions. The ripples appearing in the power-current characteristics under cw conditions have been attributed to mode hopping between the master oscillator resonant mode and the Fabry-Perot modes of the entire device cavity. Although compound cavity effects have been evidenced to affect the static and dynamic performance of the device, we have demonstrated that trains of single-mode short optical pulses at gigahertz frequencies can be conveniently generated in these devices

    Traveling wave modeling of dynamics in semiconductor ring lasers

    Get PDF
    We use the traveling wave model for simulating and analyzing nonlinear dynamics of complex semiconductor ring laser devices. This modeling allows to consider temporal-spatial distributions of the counter-propagating slowly varying optical fields and the carriers, what can be important when studying non-homogeneous ring cavities, propagation of short pulses or fast switching. By performing numerical integration of the model equations we observe several dynamic regimes as well as transitions between them. The computation of ring cavity modes explains some peculiarities of these regimes

    Longitudinal modes of multisection ring and edge-emitting semiconductor lasers

    Get PDF
    We use the traveling wave model for simulating and analyzing nonlinear dynamics of multisection ring and edge-emitting semiconductor laser devices. We introduce the concept of instantaneous longitudinal optical modes and present an algorithm for their computation. A semiconductor ring laser was considered to illustrate the advantages of the mode analysis

    Frequency locking of modulated waves

    Full text link
    We consider the behavior of a modulated wave solution to an S1\mathbb{S}^1-equivariant autonomous system of differential equations under an external forcing of modulated wave type. The modulation frequency of the forcing is assumed to be close to the modulation frequency of the modulated wave solution, while the wave frequency of the forcing is supposed to be far from that of the modulated wave solution. We describe the domain in the three-dimensional control parameter space (of frequencies and amplitude of the forcing) where stable locking of the modulation frequencies of the forcing and the modulated wave solution occurs. Our system is a simplest case scenario for the behavior of self-pulsating lasers under the influence of external periodically modulated optical signals

    Missing the Mark: A Critical Analysis of the Rights of Nature as a Legal Framework for Protecting Indigenous Interests

    Get PDF

    Numerical bifurcation analysis of traveling wave model of multisection semiconductor lasers

    Get PDF
    Traveling wave equations are used to model the dynamics of multisection semiconductor lasers. To perform a bifurcation analysis of this system of 1-D partial differential equations its low dimensional approximations are constructed and considered. Along this paper this analysis is used for the extensive study of the pulsations in a three section distributed feedback laser. Namely, stability of pulsations, different bifurcation scenaria, tunability of the pulsation frequency and its locking by the frequency of electrical modulation are considered. All these pulsation qualities are highly important when applying lasers in optical communication systems

    Modeling and efficient simulations of broad-area edge-emitting semiconductor lasers and amplifiers

    Get PDF
    We present a (2+1)-dimensional partial differential equation model for spatial-lateral dynamics of edge-emitting broad-area semiconductor devices and several extensions of this model describing different physical effects. MPI-based parallelization of the resulting middlesize numerical problem is implemented and tested on the blade cluster and separate multi-core computers at the Weierstrass Institute in Berlin. It was found, that an application of 25-30 parallel processes on all considered platforms was guaranteeing a nearly optimal performance of the algorithm with the speedup around 20-25 and the efficiency of 0.7-0.8. It was also shown, that a simultaneous usage of several in-house available multi-core computers allows a further increase of the speedup without a significant loss of the efficiency. Finally, an importance of the considered problem and the efficient numerical simulations of this problem were illustrated by a few examples occurring in real world applications

    Calculation of steady states in dynamical semiconductor laser models

    Get PDF
    We discuss numerical challenges in calculating stable and unstable steady states of widely used dynamical semiconductor laser models. Knowledge of these states is valuable when analyzing laser dynamics and different properties of the lasing states. The example simulations and analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, where the steady state defining conditions are formulated as a system of nonlinear algebraic equations. The per- formed steady state calculations reveal limitations of the Lang-Kobayashi model, explain nontrivial bias threshold relations in lasers with several electrical contacts, or predict and explain transient dynamics when simulating such lasers
    corecore