129 research outputs found
Variation in Pubic Symphysis Fusion Across Primates: Implications for Obstetric Adaptation
Objectives The unfused human pubic symphysis has been interpreted as an obstetric adaptation to facilitate the passage of a large-brained baby through a relatively small, bipedally adapted pelvis. The degree of fusion of the adult pubic symphysis was evaluated across primate species to gauge whether an open symphysis can be interpreted as an obstetric adaptation in humans and other primates. Materials and Methods Symphyseal fusion was assessed in 718 individuals from 67 nonhuman primate species. Variation in fusion in specimens of known ages and sex from four species (Galago moholi, Macaca mulatta, Microcebus murinus, and Pan troglodytes) was further examined, with detailed analyses of pubic changes by age and sex carried out through logistic regressions in macaques. Results Pubic fusion occurs in most primate species. It is observed earlier in life in males than in females in Ma. mulatta and Pa. troglodytes, only in males in Mi. murinus, and does not occur in Ga. moholi. Discussion While delayed or absent pubic fusion is more prevalent in female primates, suggesting obstetric adaptation, there is no clear relation with childbirth constraints, as fusion is also observed in species experiencing a tight cephalopelvic fit. Other mechanisms might have evolved to facilitate birth in some species, or nonobstetric selective pressures might be counteracting the obstetric advantages of a flexible symphysis. The preservation of an open symphysis throughout life in humans and some other primates, however, can be best interpreted as convergent evolution due to obstetric selection
Belediye Müzesi
Taha Toros Arşivi, Dosya No: 114-Müzelerİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033
The internal cranial anatomy of the Middle Pleistocene Broken Hill 1 cranium
The cranium (Broken Hill 1 or BH1) from the site previously known as Broken Hill, Northern Rhodesia (now Kabwe, Zambia) is one of the best preserved hominin fossils from the mid-Pleistocene. Its distinctive combination of anatomical features, however, makes its taxonomic attribution ambiguous. High resolution microCT, which has not previously been employed for gross morphological studies of this important specimen, allows a precise description of the internal anatomical features of BH1, including the distribution of cranial vault thickness and its
2
internal composition, paranasal pneumatisation, pneumatisation of the temporal bone and endocranial anatomy. Relative to other chronologically and taxonomically relevant specimens, BH1 shows unusually marked paranasal pneumatisation and a fairly thick cranial vault. For many of the features analysed, this fossil does not exhibit the apomorphic conditions observed in either Neandertals or Homo sapiens. Its morphology and the general shape of the brain and of the skull may be partly explained by an allometric relationship relative to the features observed in Homo erectus s.l. However, further research is still necessary to better appreciate the cranial anatomy of BH1 and the role of Homo rhodesiensis/Homo heidelbergensis in the course of human evolution.
This paper also deals with more general aspects of scientific practices in palaeoanthropology. In particular, we give precise descriptions of many internal anatomical features of Broken Hill 1, a specimen discovered in 1921. This important and unique dataset will allow independent comparative studies in the future. However, we were limited in our study by the very restricted amount of comparative information available for Homo fossils. In our view, scientific papers dealing with the anatomical description of hominin specimens, both in the case of announcements of new discoveries and of discussions of important specimens found decades ago, should always include qualitative and quantitative data that truly allow for further independent research.CBS and LTB thank the Calleva Foundation and the Human Origins Research Fund for funding
Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus Symbiodinium
Dinoflagellates in the genus Symbiodinium are best known as endosymbionts of corals and other invertebrate as well as protist hosts, but also exist free-living in coastal environments. Despite their importance in marine ecosystems, less than 10 loci have been used to explore phylogenetic relationships in this group, and only the multi-copy nuclear ribosomal Internal Transcribed Spacer (ITS) regions 1 and 2 have been used to characterize fine-scale genetic diversity within the nine clades (A–I) that comprise the genus. Here, we describe a three-step molecular approach focused on 1) identifying new candidate genes for phylogenetic analysis of Symbiodinium spp., 2) characterizing the phylogenetic relationship of these candidate genes from DNA samples spanning eight Symbiodinium clades (A–H), and 3) conducting in-depth phylogenetic analyses of candidate genes displaying genetic divergences equal or higher than those within the ITS-2 of Symbiodinium clade C. To this end, we used bioinformatics tools and reciprocal comparisons to identify homologous genes from 55,551 cDNA sequences representing two Symbiodinium and six additional dinoflagellate EST libraries. Of the 84 candidate genes identified, 7 Symbiodinium genes (elf2, coI, coIII, cob, calmodulin, rad24, and actin) were characterized by sequencing 23 DNA samples spanning eight Symbiodinium clades (A–H). Four genes displaying higher rates of genetic divergences than ITS-2 within clade C were selected for in-depth phylogenetic analyses, which revealed that calmodulin has limited taxonomic utility but that coI, rad24, and actin behave predictably with respect to Symbiodinium lineage C and are potential candidates as new markers for this group. The approach for targeting candidate genes described here can serve as a model for future studies aimed at identifying and testing new phylogenetically informative genes for taxa where transcriptomic and genomics data are available
Higher heritabilities for gait components than for overall gait scores may improve mobility in ducks
International audienceAbstractBackgroundGenetic progress in selection for greater body mass and meat yield in poultry has been associated with an increase in gait problems which are detrimental to productivity and welfare. The incidence of suboptimal gait in breeding flocks is controlled through the use of a visual gait score, which is a subjective assessment of walking ability of each bird. The subjective nature of the visual gait score has led to concerns over its effectiveness in reducing the incidence of suboptimal gait in poultry through breeding. The aims of this study were to assess the reliability of the current visual gait scoring system in ducks and to develop a more objective method to select for better gait.ResultsExperienced gait scorers assessed short video clips of walking ducks to estimate the reliability of the current visual gait scoring system. Kendall’s coefficients of concordance between and within observers were estimated at 0.49 and 0.75, respectively. In order to develop a more objective scoring system, gait components were visually scored on more than 4000 pedigreed Pekin ducks and genetic parameters were estimated for these components. Gait components, which are a more objective measure, had heritabilities that were as good as, or better than, those of the overall visual gait score.ConclusionsMeasurement of gait components is simpler and therefore more objective than the standard visual gait score. The recording of gait components can potentially be automated, which may increase accuracy further and may improve heritability estimates. Genetic correlations were generally low, which suggests that it is possible to use gait components to select for an overall improvement in both economic traits and gait as part of a balanced breeding programme
QLT0267, a small molecule inhibitor targeting integrin-linked kinase (ILK), and docetaxel can combine to produce synergistic interactions linked to enhanced cytotoxicity, reductions in P-AKT levels, altered F-actin architecture and improved treatment outcomes in an orthotopic breast cancer model
From Stop to Start: Tandem Gene Arrangement, Copy Number and Trans-Splicing Sites in the Dinoflagellate Amphidinium carterae
Dinoflagellate genomes present unique challenges including large size, modified DNA bases, lack of nucleosomes, and condensed chromosomes. EST sequencing has shown that many genes are found as many slightly different variants implying that many copies are present in the genome. As a preliminary survey of the genome our goal was to obtain genomic sequences for 47 genes from the dinoflagellate Amphidinium carterae. A PCR approach was used to avoid problems with large insert libraries. One primer set was oriented inward to amplify the genomic complement of the cDNA and a second primer set would amplify outward between tandem repeats of the same gene. Each gene was also tested for a spliced leader using cDNA as template. Almost all (14/15) of the highly expressed genes (i.e. those with high representation in the cDNA pool) were shown to be in tandem arrays with short intergenic spacers, and most were trans-spliced. Only two moderately expressed genes were found in tandem arrays. A polyadenylation signal was found in genomic copies containing the sequence AAAAG/C at the exact polyadenylation site and was conserved between species. Four genes were found to have a high intron density (>5 introns) while most either lacked introns, or had only one to three. Actin was selected for deeper sequencing of both genomic and cDNA copies. Two clusters of actin copies were found, separated from each other by many non-coding features such as intron size and sequence. One intron-rich gene was selected for genomic walking using inverse PCR, and was not shown to be in a tandem repeat. The first glimpse of dinoflagellate genome indicates two general categories of genes in dinoflagellates, a highly expressed tandem repeat class and an intron rich less expressed class. This combination of features appears to be unique among eukaryotes
Caenorhabditis elegans Genomic Response to Soil Bacteria Predicts Environment-Specific Genetic Effects on Life History Traits
With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments
Brief gatekeeper training for suicide prevention in an ethnic minority population: a controlled intervention
Genetic Variations in the Regulator of G-Protein Signaling Genes Are Associated with Survival in Late-Stage Non-Small Cell Lung Cancer
The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients
- …
