28 research outputs found
OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars
We have used the STACEE high-energy gamma-ray detector to look for fast
blue-green laser pulses from the vicinity of 187 stars. The STACEE detector
offers unprecedented light-collecting capability for the detection of
nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be
approximately 10 photons per square meter at a wavelength of 420 nm. The stars
have been chosen because their characteristics are such that they may harbor
habitable planets and they are relatively close to Earth. Each star was
observed for 10 minutes and we found no evidence for laser pulses in any of the
data sets.Comment: 38 pages, 12 figures. Accepted for publication in Astrobiolog
Very high energy observations of the BL Lac objects 3C 66A and OJ 287
Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we
have observed the BL Lac objects 3C 66A and OJ 287. These are members of the
class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three
LBLs predicted by Costamante and Ghisellini to be potential sources of very
high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae,
has recently been detected by the MAGIC collaboration. Our observations have
not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A
of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits
assume a Crab-like energy spectrum with an effective energy threshold of 185
GeV.Comment: 24 pages, 15 figures, Accepted for publication in Astroparticle
Physic
Phylogenetic relationships of egg parasitoids (Hymenoptera: Eulophidae) and correlated life history characteristics of their Neotropical Cassidinae hosts (Coleoptera, Chrysomelidae)
Tectonics and sedimentation of the central sector of the Santo Onofre rift, north Minas Gerais, Brazil
59. Histopathological parameters reflect the increased aggressiveness of comedo ductal carcinoma in situ
From gene to organismal phylogeny: Reconciled trees and the gene tree species tree problem
The processes of gene duplication, loss, and lineage sorting can result in incongruence between the phylogenies of genes and those of species. This incongruence complicates the task of inferring the latter from the former. We describe the use of reconciled trees to reconstruct the history of a gene tree with respect to a species tree. Reconciled trees allow the history of the gene tree to be visualized and also quantify the relationship between the two trees. The cost of a reconciled tree is the total number of duplications and gene losses required to reconcile a gene tree with its species tree. We describe the use of heuristic searches to find the species tree which yields the reconciled tree with the lowest cost. This method can be used to infer species trees from one or more gene trees
