182 research outputs found
Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds
Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ~90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg−1 Z. marina dry weight (mean: 5.7 L. zosterae cells mg−1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mg−1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae
Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation
Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 μM and phenanthrene 100 μM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation.This work has been supported by the Spanish Ministry of Economy and Competitiveness and FEDER Funds (Project CTM 2011-25389). Marta Pazos received financial support under the Ramon y Cajal programme and Marta Cobas under the final project master grant "Campus do Mar Knowledge in depth"
Gaps in Propolis Research: Challenges Posed to Commercialisation and the Need for an Holistic Approach
YesBoth the season and region in which propolis is collected influence its chemical composition, resulting in variations in biological activity. Significant differences in composition and concentration of certain chemical compounds in propolis make standardisation and quality control challenging. In addition, the lack of uniformity in evaluation methodology and analytical techniques, make it extremely difficult to correlate data across the climatic zones. In this report, we focus on the gaps in propolis research and the challenges they pose for commercialisation, with suggestions as to how we might address them. We hope to stimulate further research which explores the holistic nature of propolis in order to derive a propolis bioactivity standard
Effects of Endolithic Parasitism on Invasive and Indigenous Mussels in a Variable Physical Environment
Biotic stress may operate in concert with physical environmental conditions to limit or facilitate invasion processes while altering competitive interactions between invaders and native species. Here, we examine how endolithic parasitism of an invasive and an indigenous mussel species acts in synergy with abiotic conditions of the habitat. Our results show that the invasive Mytilus galloprovincialis is more infested than the native Perna perna and this difference is probably due to the greater thickness of the protective outer-layer of the shell of the indigenous species. Higher abrasion due to waves on the open coast could account for dissimilarities in degree of infestation between bays and the more wave-exposed open coast. Also micro-scale variations of light affected the level of endolithic parasitism, which was more intense at non-shaded sites. The higher levels of endolithic parasitism in Mytilus mirrored greater mortality rates attributed to parasitism in this species. Condition index, attachment strength and shell strength of both species were negatively affected by the parasites suggesting an energy trade-off between the need to repair the damaged shell and the other physiological parameters. We suggest that, because it has a lower attachment strength and a thinner shell, the invasiveness of M. galloprovincialis will be limited at sun and wave exposed locations where endolithic activity, shell scouring and risk of dislodgement are high. These results underline the crucial role of physical environment in regulating biotic stress, and how these physical-biological interactions may explain site-to-site variability of competitive balances between invasive and indigenous species
Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties
Screening of fungal strains for remediation of water and soil contaminated with synthetic dyes
Occurrence of thraustochytrid fungi in corals and coral mucus
176-181Occurrence of thraustochytrid fungi in corals, fresh coral mucus and floating and attached mucus detritus from the Lakshadweep islands in the Arabian Sea was studied. Corallochytrium limacisporum Raghukumar, Thraustochytrium motivum Goldstein, Labyrinthuloides minuta (Watson and Raper) Perkins, L. yorkensis Perkins and Ulkenia visurgensis (Ulken) Gaertner were isolated. C. limacisporum was the most common and was detected in the polyps of 3 corals using immunofluorescence. Mucus detritus from Kalpeni island harboured 1.9 x 10(6) thraustochytrids. g-1 dry weight and fresh mucus from Acropora sp. 12 and 20.ml-1. The number of thraustochytrids in detrital mucus incubated with sterilised lagoon water increased significantly than when incubated with unsterilised water, suggesting grazing by protozoans. Fresh mucus may be further colonised by thraustochytrids once liberated into the water. Ciliates could be maintained in the laboratory on cells of C. limacisporum
- …
