1,636 research outputs found

    The NASA Langley building solar project and the supporting Lewis solar technology program

    Get PDF
    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed

    The general relativistic infinite plane

    Get PDF
    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic

    ECONOMIC ANALYSIS OF USING A BORDER TREATMENT FOR REDUCING ORGANOPHOSPHATE USE IN SEED POTATO PRODUCTION

    Get PDF
    Recent research shows initial colonization of potato fields by winged green peach aphid is concentrated at field edges. This suggests that insecticides applied only to field margins during initial colonization would largely eliminate a colonizing aphid population, conserve natural enemies in the field center, and reduce insecticide use. To better understand the costs and benefits of reducing organophosphate use, the six participating growers were interviewed to ascertain their reason for participating and their satisfaction with the border only treatment method as well as their estimated net economic benefits. Five of the farms ranked cost reduction as the most important reason for participating. The sixth farm ranked reducing virus spread as the most important reason with cost reduction as their second most important reason. The average cost savings over all 28 participating fields of using the border treatment is estimated to be $23.85 per acre for the entire field-a 93% savings. Almost all the farmers found the border treatment method to be successful at aphid control. None of the farmers observed any impact on the physical yield of seed potato. All the fields were certified during the summer except for one of Farmer F's fields that was lost because of off type. In conclusion, the border treatment method seems likely to be adopted by many farmers since the potential cost saving is large and farmers dislike Monitor. However, some farmers may resist the method due to scouting requirements and costs. Also, farmers with fields that do not meet the uniformity requirements of the border treatment will not be successful in their use of the border method.Crop Production/Industries,

    Producers' Use of Crop Borders for Management of Potato Virus Y (PVY) in Seed Potatoes

    Get PDF
    Potato virus Y (PVY) is a very serious problem throughout most major seed potato producing states. Seed potato producers in Minnesota and North Dakota were surveyed in early 2005 to assess their perception of the profitability and risks associated with using crop borders to manage PVY in seed lots. Five of the 23 producers responding (a 25% response rate) said they had used crop borders in 2004. These 23 producers entered 152 seed lots into state seed certification programs. On average, producers had less than 0.1 seed lots rejected for PVY based on summer inspection. The average number of seed lots rejected in winter trials was 1.7. Of the 152 seed lots, these producers said they had entered into state seed certification programs, they reported detailed information on 108 lots. Generations 1 and 2 were the most likely generations to be protected by a crop border. Of these 108 seed lots, 104 passed summer inspection for PVY. Seventy-four percent of the 89 lots sent in for the winter test were reported to have passed. The use of crop borders was significant in explaining whether a seed lot had passed the winter test or not. Thirty-one (97%) of the 32 seed lots that were planted within a crop border passed the winter test while 31 (54%) of the 57 seed lots that were not planted with a crop border passed the winter test. No relationship was found between the choice of border crop and passing the winter test. Producers also were asked to state their agreement or disagreement with several statements regarding their knowledge and opinions on use of crop borders.Crop Production/Industries,

    Reduced GABA(B) receptor subunit expression and paired-pulse depression in a genetic model of absence seizures

    Get PDF
    Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABAB receptors contribute to neocortical hyperexcitability in these animals. By using Real-Time PCR we found that mRNA levels for most GABAB(1) subunits are diminished in epileptic WAG/Rij neocortex as compared with age-matched non-epileptic controls (NEC), whereas GABAB(2) mRNA is unchanged. Next, we investigated the cellular distribution of GABAB(1) and GABAB(2) subunits by confocal microscopy and discovered that GABAB(1) subunits fail to localize in the distal dendrites of WAG/Rij neocortical pyramidal cells. Intracellular recordings from neocortical cells in an in vitro slice preparation demonstrated reduced paired-pulse depression of pharmacologically isolated excitatory and inhibitory responses in epileptic WAG/Rij rats as compared with NECs; moreover, paired-pulse depression in NEC slices was diminished by a GABAB receptor antagonist to a greater extent than in WAG/Rij rats further suggesting GABAB receptor dysfunction. In conclusion, our data identify changes in GABAB receptor subunit expression and distribution along with decreased paired-pulse depression in epileptic WAG/Rij rat neocortex. We propose that these alterations may contribute to neocorticalhyperexcitability and thus to SW generation in absence epilepsy

    Milk production costs and milk prices

    Get PDF
    Cover title

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Comparison of ecosystem processes in a woodland and prairie pond with different hydroperiods

    Get PDF
    Shallow lakes and ponds constitute a significant number of water bodies worldwide. Many are heterotrophic, indicating that they are likely net contributors to global carbon cycling. Climate change is likely to have important impacts on these waterbodies. In this study, we examined two small Minnesota ponds; a permanent woodland pond and a temporary prairie pond. The woodland pond had lower levels of phosphorus and phytoplankton than the prairie pond. Using the open water oxygen method, we found the prairie pond typically had a higher level of gross primary production (GPP) and respiration (R) than the woodland pond, although the differences between the ponds varied with season. Despite the differences in GPP and R between the ponds the net ecosystem production was similar with both being heterotrophic. Since abundant small ponds may play an important role in carbon cycling and are likely to undergo changes in temperature and hydroperiod associated with climate change, understanding pond metabolism is critical in predicting impacts and designing management schemes to mitigate changes

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Anaerobic digestion of whole-crop winter wheat silage for renewable energy production

    No full text
    With biogas production expanding across Europe in response to renewable energy incentives, a wider variety of crops need to be considered as feedstock. Maize, the most commonly used crop at present, is not ideal in cooler, wetter regions, where higher energy yields per hectare might be achieved with other cereals. Winter wheat is a possible candidate because, under these conditions, it has a good biomass yield, can be ensiled, and can be used as a whole crop material. The results showed that, when harvested at the medium milk stage, the specific methane yield was 0.32 m3 CH4 kg–1 volatile solids added, equal to 73% of the measured calorific value. Using crop yield values for the north of England, a net energy yield of 146–155 GJ ha–1 year–1 could be achieved after taking into account both direct and indirect energy consumption in cultivation, processing through anaerobic digestion, and spreading digestate back to the land. The process showed some limitations, however: the relatively low density of the substrate made it difficult to mix the digester, and there was a buildup of soluble chemical oxygen demand, which represented a loss in methane potential and may also have led to biofoaming. The high nitrogen content of the wheat initially caused problems, but these could be overcome by acclimatization. A combination of these factors is likely to limit the loading that can be applied to the digester when using winter wheat as a substrat
    corecore