41 research outputs found
A Membrane Protein/Signaling Protein Interaction Network for Arabidopsis Version AMPv2
Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs) out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway-compatible vector. The mating-based split ubiquitin system was used to screen for potential protein–protein interactions (pPPIs) among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases (RLKs), 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions, and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 386) pPPIs between 179 proteins, yielding a scale-free network (r2 = 0.863). Eighty of 142 transmembrane RLKs tested positive, identifying 3 homomers, 63 heteromers, and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs) had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G-protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa
The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix
DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent
Induction and mobilization of transposable elements (TEs) following DNA damage or other stresses has been reported in prokaryotes and eukaryotes. Recently it was discovered that eukaryotic TEs are frequently associated with long non-coding RNAs (lncRNAs), many of which are also upregulated by stress. Yet, it is unknown whether DNA damage-induced transcriptional activation of TEs and lncRNAs occurs sporadically or is a synchronized, genome-wide response. Here we investigated the transcriptome of Arabidopsis wild-type (WT) and ataxia telangiectasia mutated (atm) mutant plants 3 h after induction of DNA damage. In WT, expression of 5.2% of the protein-coding genes is ≥2-fold changed, whereas in atm plants, only 2.6% of these genes are regulated, and the response of genes associated with DNA repair, replication, and cell cycle is largely lost. In contrast, only less than 0.6% of TEs and lncRNAs respond to DNA damage in WT plants, and the regulation of ≥95% of them is ATM-dependent. The ATM-downstream factors BRCA1, DRM1, JMJ30, AGO2, and the ATM-independent AGO4 participate in the regulation of individual TEs and lncRNAs. Remarkably, protein-coding genes located adjacent to DNA damage-responsive TEs and lncRNAs are frequently coexpressed, which is consistent with the hypothesis that TEs and lncRNAs located close to genes commonly function as controlling elements
Data Driven Condition Monitoring Based on a Digital Twin for a Linear Actuator Realized As a Closed Hydraulic System
Linear actuators, implemented as closed hydraulic systems, without external piping, are a state of the art drive concept, see (Gannon, 2017). Collecting data, used to train a condition monitoring (CM) for such drives, running 24/7, is cumbersome or even not possible. To gain training data, containing valid and invalid system states, we developed a simulation model, consisting of the most relevant physical effects. The simulated data are evaluated by a one-step feature approach and additionally with a two-step approach using two less complex fault state separation methods. In the end, the two-step method showed to be slightly better. The condition monitoring is not only used to recognize, but also to distinguish between accumulator and pump faults.</jats:p
Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiospermcuscuta
Changes in cell walls have been previously observed in the mature infection organ, or haustorium, of the parasitic angiosperm Cuscuta, but are not equally well charted in young haustoria. In this study, we focused on the molecular processes in the early stages of developing haustoria; that is, before the parasite engages in a physiological contact with its host. We describe first the identification of differentially expressed genes in young haustoria whose development was induced by far-red light and tactile stimuli in the absence of a host plant by suppression subtractive hybridization. To improve sequence information and to aid in the identification of the obtained candidates, reference transcriptomes derived from two species of Cuscuta, C. gronovii and C. reflexa, were generated. Subsequent quantitative gene expression analysis with different tissues of C. reflexa revealed that among the genes that were up-regulated in young haustoria, two xyloglucan endotransglucosylase/hydrolase (XTH) genes were highly expressed almost exclusively at the onset of haustorium development. The same expression pattern was also found for the closest XTH homologues from C. gronovii. In situ assays for XTH-specific action suggested that xyloglucan endotransglucosylation was most pronounced in the cell walls of the swelling area of the haustorium facing the host plant, but was also detectable in later stages of haustoriogenesis. We propose that xyloglucan remodelling by Cuscuta XTHs prepares the parasite for host infection and possibly aids the invasive growth of the haustorium
Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiospermcuscuta
Changes in cell walls have been previously observed in the mature infection organ, or haustorium, of the parasitic angiosperm Cuscuta, but are not equally well charted in young haustoria. In this study, we focused on the molecular processes in the early stages of developing haustoria; that is, before the parasite engages in a physiological contact with its host. We describe first the identification of differentially expressed genes in young haustoria whose development was induced by far-red light and tactile stimuli in the absence of a host plant by suppression subtractive hybridization. To improve sequence information and to aid in the identification of the obtained candidates, reference transcriptomes derived from two species of Cuscuta, C. gronovii and C. reflexa, were generated. Subsequent quantitative gene expression analysis with different tissues of C. reflexa revealed that among the genes that were up-regulated in young haustoria, two xyloglucan endotransglucosylase/hydrolase (XTH) genes were highly expressed almost exclusively at the onset of haustorium development. The same expression pattern was also found for the closest XTH homologues from C. gronovii. In situ assays for XTH-specific action suggested that xyloglucan endotransglucosylation was most pronounced in the cell walls of the swelling area of the haustorium facing the host plant, but was also detectable in later stages of haustoriogenesis. We propose that xyloglucan remodelling by Cuscuta XTHs prepares the parasite for host infection and possibly aids the invasive growth of the haustorium
Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana
AbstractArabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9±1.7 and 1.7±0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds
Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence
A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network
