802 research outputs found
TEM observations of wear mechanisms of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition
The dry sliding wear of monolayer TiAlCrN and TiAlCrYN and multilayer TiAlN/CrN coatings has been investigated against a BM2 tool steel counterface using a ring on block configuration at 91 N, 0.42 m/s. The coatings were deposited on a BM2 tool steel substrate by combined steered-arc/unbalanced-magnetron deposition. The wear rate of the multilayer was superior to the monolayer, although both provide a substantial improvement compared with the wear behaviour of the base BM2 tool steel (e.g., wear rate = 6.1 × 10-4 mm3/m for the BM2 tool steel; 3.98 × 10-5 mm3/m for the TiAlCrN monolayer and 2.58 × 10-5 mm3/m for the TiAlN/CrN multilayer). Wear of the coatings occurred by several mechanisms, fine scale (< 200 nm) detachment in the early stages and micron scale detachment associated with cracking in the coating in the later stages. Detailed transmission electron microscopy of cross-sections of the worn surface indicated that two dominant types of cracking were present within the coating: (1) cracking perpendicular to the coating surface, often along columnar grain boundaries, typically running through the entire coating; (2) cracking approximately parallel to the worn surface, extending across several columnar grains. For the multilayers, there was no evidence that the spalling was induced by decohesion along the interface of the multilayers. Limited surface deformation was detected at the worn surface of the TiAlCrYN and TiAlCrN, but not at the worn surface of the TiAlN/CrN, tested under identical conditions. In contrast, the uncoated BM2 tool steel worn surface exhibited extensive plastic deformation. The relationship between wear mechanism and coating structure is discussed. © 1999 Published by Elsevier Science S.A. All rights reserved
Lubricated sliding wear behaviour of aluminium alloy composites
Interest in aluminium alloy (Al-alloy) composites as wear resistant materials continues to grow. However, the use of the popular Al-alloy-SiC composite can be limited by the abrasive nature of the SiC, leading to increased counterface wear rates. This study reports new Al-alloy composites that offer high wear resistance, to a level similar to Al-alloy-SiC. Aluminium alloy (2124, 5056) matrix composites reinforced by nominally 15 vol.% of Cr3Si, MoSi2, Ni3Al and SiC particles were prepared by a powder metallurgy route. The aluminium alloy matrix was produced by gas atomisation, and the Cr3Si, MoSi2 and Ni3Al were prepared by self-propagating high temperature synthesis (SHS), while the SiC was from a standard commercial supply. Following blending, the particulates were consolidated by extrusion, producing a homogenous distribution of the reinforcement in the matrix. Wear testing was undertaken using a pin-on-ring configuration against an M2 steel counterface, with a commercial synthetic oil lubricant, at 0.94 m/s and a normal load of 630 N, corresponding to initial Hertzian contact pressures of 750–890 MPa (the exact value depending on the material properties). Specific wear rates at sliding distances exceeding 400 km were in the range 4.5–12.7 × 10?10 mm3/Nm. The monolithic alloys gave the highest specific wear rates, while the MoSi2 and Cr3Si reinforced alloys exhibited the lowest. The worn surface has been analysed in detail using focused ion beam (FIB) microscopy to determine the sub-surface structural evolution and by tomographic reconstruction of tilted scanning electron microscopy (SEM) images, to determine the local worn surface topography. Consequently, the wear mechanisms as a function of alloy composition and reinforcement type are discussed.<br/
Investigating worn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM
TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, believed to be associated with the formation of tribo-films comprising Magnéli phases such as V2O5. In order to investigate this hypothesis, dry sliding wear of TiAlN/VN coatings was undertaken against Al2O3. Focused ion beam was used to generate site-specific TEM specimens. A thin (2-20nm) tribo-film was observed at the worn surface, with occasional 'roll-like' wear debris (φ 5-40nm). Both were amorphous and contained the same Ti, Al and V ratio as the coating, but with the nitrogen largely replaced by oxygen. No evidence of Magnéli phases was found. © 2006 IOP Publishing Ltd
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
We develop a new Low-level, First-order Probabilistic Programming Language
(LF-PPL) suited for models containing a mix of continuous, discrete, and/or
piecewise-continuous variables. The key success of this language and its
compilation scheme is in its ability to automatically distinguish parameters
the density function is discontinuous with respect to, while further providing
runtime checks for boundary crossings. This enables the introduction of new
inference engines that are able to exploit gradient information, while
remaining efficient for models which are not everywhere differentiable. We
demonstrate this ability by incorporating a discontinuous Hamiltonian Monte
Carlo (DHMC) inference engine that is able to deliver automated and efficient
inference for non-differentiable models. Our system is backed up by a
mathematical formalism that ensures that any model expressed in this language
has a density with measure zero discontinuities to maintain the validity of the
inference engine.Comment: Published in the proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics (AISTATS
Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties
The microstructural evolution in a set of Mn-based maraging steels (7–12 wt% Mn) when aged at 460–500 ºC for various durations up to 10,080 min and the influences on mechanical properties are systematically investigated. The improved yield strength of peak-aged samples is attributed to the formation of Ni2TiAl precipitates and the precipitation strengthening is governed by Orowan mechanism. Segregation of Mn at grain boundaries in the initial aging stage resulted in severe intergranular brittleness. During further aging, accumulated Mn segregation leading to the formation of ductile lath-like reverted austenite removed the embrittlement and significantly improved the ductility. In the overaged condition, the steady work hardening after yielding compensates the loss of yield strength resulting from the coarsening of precipitates and softening of α′-martensite matrix. There was only limited evidence of the TRIP effect in the reverted austenite, indicating that work hardening was associated with other deformation mechanisms. Increasing the aging temperature or the Mn content of alloy that promotes austenite reversion was demonstrated to accelerate the improvement of ductility
Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures
TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, reported to be associated with the formation of self-lubricating V2O5. To investigate this hypothesis, dry sliding ball-on-disc wear tests of TiAlN/VN coatings on flat stainless steel substrates were undertaken against Al2O3 at 25 C, 300 C and 635 C in air. The coating exhibited increased wear rate
with temperature. The friction coefficient was 0.53 at 25 C, which increased to 1.03 at 300 C and decreased to 0.46 at 635 C. Detailed investigation of the worn surfaces was undertaken using site-specific transmission electron microscopy (TEM) via focused ion beam (FIB) microscopy, along with Fourier transform infrared (FTIR) and Raman spectroscopy. Microstructure and tribo-induced chemical
reactions at these temperatures were correlated with the coating’s wear and friction behaviour. The friction behaviour at room temperature is attributed to the presence of a thin hydrated tribofilm and the presence of V2O5 at high temperature
TiAIN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures
The addition of properly selected elements, coupled in nanoscale multilayer structures, can further enhance the properties of TiAlN coatings and bring new high performance. The incorporation of Y in the nanoscale pseudo-superlattice TiAlCrN/TiAlYN with typical period of 1.7 nm not only improves the oxidation resistance but also effectively reduces the coefficient of friction of the coating from 0.9 to 0.65 at temperatures in the range of 850–950 °C. The adaptation of the tribological properties occurs as a result of the preferential migration of the Y to the column boundaries. TiAlN/VN superlattice can achieve another self-adaptation process. During friction the coatings adapt themselves to the combined thermal and mechanical wear by the formation of highly lubricious vanadium-oxides due to high flash temperatures at the asperity contacts on the surface. The integrity of the bulk of the coating is retained, leading to exceptionally low, for superhard coatings, friction coefficient of 0.5 and a wear coefficient of 2 × 10−17 m3·N−1·m−1. The coatings have been deposited by the combined steered cathodic arc unbalanced magnetron sputtering method.</p
- …
