790 research outputs found
Resource Planning for Neglected Tropical Disease (NTD) Control Programs: Feasibility Study of the Tool for Integrated Planning and Costing (TIPAC).
<p>Resource Planning for Neglected Tropical Disease (NTD) Control Programs: Feasibility Study of the Tool for Integrated Planning and Costing (TIPAC)</p
Modified Tinea – A Mithering Problem
Eberconazole has an anti-inflammatory effect and in our experience, also has a better role in managing steroid-modified and facial lesions. Eberconazole has a better role in clearance of the lesions. In these 5 cases of tinea infections, treatment with eberconazole helped in attaining favorable outcomes
Single‐Column Model Simulations of Subtropical Marine Boundary‐Layer Cloud Transitions Under Weakening Inversions
Results are presented of the GASS/EUCLIPSE single‐column model intercomparison study on the subtropical marine low‐level cloud transition. A central goal is to establish the performance of state‐of‐the‐art boundary‐layer schemes for weather and climate models for this cloud regime, using large‐eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North‐Eastern Pacific, while one reflects conditions in the North‐Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low‐level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well‐known “too few too bright” problem. The boundary‐layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization
E. coli metabolic protein aldehydealcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed
It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S
ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in
E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding.
Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions
of additional regulatory proteins with the ribosom
Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System
A wide range of organisms features molecular machines, circadian clocks,
which generate endogenous oscillations with ~24 h periodicity and thereby
synchronize biological processes to diurnal environmental fluctuations.
Recently, it has become clear that plants harbor more complex gene regulatory
circuits within the core circadian clocks than other organisms, inspiring a
fundamental question: are all these regulatory interactions between clock genes
equally crucial for the establishment and maintenance of circadian rhythms? Our
mechanistic simulation for Arabidopsis thaliana demonstrates that at least half
of the total regulatory interactions must be present to express the circadian
molecular profiles observed in wild-type plants. A set of those essential
interactions is called herein a kernel of the circadian system. The kernel
structure unbiasedly reveals four interlocked negative feedback loops
contributing to circadian rhythms, and three feedback loops among them drive
the autonomous oscillation itself. Strikingly, the kernel structure, as well as
the whole clock circuitry, is overwhelmingly composed of inhibitory, rather
than activating, interactions between genes. We found that this tendency
underlies plant circadian molecular profiles which often exhibit
sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate
profiles, inhibitory interactions may facilitate the global coordination of
temporally-distant clock events that are markedly peaked at very specific times
of day. Our systematic approach resulting in experimentally-testable
predictions provides insights into a design principle of biological clockwork,
with implications for synthetic biology.Comment: Supplementary material is available at the journal websit
Polyphenolic acetates: A newer anti-Mycobacterial therapeutic option
The objective of our research project was screening of various highly specific substrates of Acetoxy Drug: Protein Transacytylase (M.TAase) for antimycobacterial activity. Mycobacterial culture was done in Middlebrook’s 7H9 media. Protein purification (Mycobacterial Tranacetylase, M.TAase) was done by ion exchange chromatography and its demonstration was done on SDS- polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. Middlebrook’s 7H9 broth was procured from Becton Dickinson. CM-Sepharose, DEAE-Sepharose and Q-Sephharose were purchased from Amersham Pharmacia. Anti acetyl lysine polyclonal antibody was purchased from Cell Signaling. The Middlebrook 7H9 medium was used for M. smegmatis culture. The media was prepared according to the manufacturer’s instructions. The various Polyphenol acetate compounds were tested for their antimycobacterial activities. Minimal inhibitory concentrations (MIC) were calculated by Alamar blue dye assay method. The GST protein was used as a receptor protein and purified Mycobacterial Glutamine Synthetase (GS) as TAase for acetylation by DAMC. To demonstrate the TAase catalyzed acetylation of GST by DAMC, purified M.TAase (GS) was preincubated with GST and DAMC followed by western blot using anti acetyl lysine antibody, which avidly react with the acetylated proteins. The growth pattern of M. smegmatis was diminished under the influence of various polyphenolic acetates (PA) tested for their anti-mycobacterial activity. DAMC and DAMC-5-carboxylic acid was found to have MIC of 40μg/ml whereas DAMC-6-carboxylic acid was reported to have MIC value of 35μg/ml and for ellagic acid tetra acetate (EATA) it was 60μg/ml. Previous work in our lab has led to discovery of a novel enzyme acetoxy drug: protein transacetylase (TAase), catalyzing transfer of acetyl group from various polyphenolic peracetate (PA) to certain receptor proteins such as cytochromes P-450, NADPH cytochrome reductase, nitric oxide synthase (NOS) has been established in various eukaryotic as well as prokaryotic sources. PA(s) irreversible inhibitors of mammalian CYP linked MFO, possibly due to modification of cytochrome p- 450 by acetylation in a reaction catalysed by M.TAase (GS) utilizing PA(s) as a donor of acetyl groups. Accordingly, it was hypothesized that the CYP51 of mycobacteria involved in the cell wall sterol synthesis could possibly be modified by our PA(s) through the novel unknown action of GS as transacetylase leading to the death of mycobacterial cell by way of acetylation catalyzed by acetoxy drug: protein transacetylase (M.TAase or GS).Keywords: Transacetylase; Glutamine synthetase; Mycobacterium smegmatis; Polyphenolic acetates; Acetoxy drug: protein transacetylas
Post-mortem assessment in vascular dementia: advances and aspirations.
BACKGROUND: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. DISCUSSION: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. CONCLUSION: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
- …
