1,534 research outputs found
Recommended from our members
A novel word-independent gesture-typing continuous authentication scheme for mobile devices
In this study, we produce a new continuous authentication scheme for gesture-typing on mobile devices. Our scheme is the first scheme that authenticates gesture-typing interactions in a word-independent format. The scheme relies on groupings of features extracted from the word gesture after it has been reduced to parts common to all gestures. We show that movement sensors are also important in differentiating between users. We describe the feature extraction processes and analyse our proposed feature set. The unique process of our authentication scheme is presented and described. We collect our own gesture typing dataset including data collected during sitting, standing and walking activities for realism. We test our features against state-of-the-art touch-screen interaction features and compare feature extraction times on real mobile devices. Our scheme authenticates users with an equal error rate of 3.58% for a single word-gesture. The equal error rate is reduced to 0.81% when 3 word-gestures are used to authenticate
Recommended from our members
Patient privacy protection using anonymous access control techniques
Objective: The objective of this study is to develop a solution to preserve security and privacy in a healthcare environment where health-sensitive information will be accessed by many parties and stored in various distributed databases. The solution should maintain anonymous medical records and it should be able to link anonymous medical information in distributed databases into a single patient medical record with the patient identity. Methods: In this paper we present a protocol that can be used to authenticate and authorize patients to healthcare services without providing the patient identification. Healthcare service can identify the patient using separate temporary identities in each identification session and medical records are linked to these temporary identities. Temporary identities can be used to enable record linkage and reverse track real patient identity in critical medical situations. Results: The proposed protocol provides main security and privacy services such as user anonymity, message privacy, message confidentiality, user authentication, user authorization and message replay attacks. The medical environment validates the patient at the healthcare service as a real and registered patient for the medical services. Using the proposed protocol, the patient anonymous medical records at different healthcare services can be linked into one single report and it is possible to securely reverse track anonymous patient into the real identity. Conclusion: The protocol protects the patient privacy with a secure anonymous authentication to healthcare services and medical record registries according to the European and the UK legislations, where the patient real identity is not disclosed with the distributed patient medical records
Recommended from our members
Modelling the Spread of Botnet Malware in IoT-Based Wireless Sensor Networks
The propagation approach of a botnet largely dictates its formation, establishing a foundation of bots for future exploitation. The chosen propagation method determines the attack surface, and consequently, the degree of network penetration, as well as the overall size and the eventual attack potency. It is therefore essential to understand propagation behaviours and influential factors in order to better secure vulnerable systems. Whilst botnet propagation is generally well-studied, newer technologies like IoT have unique characteristics which are yet to be thoroughly explored. In this paper, we apply the principles of epidemic modelling to IoT networks consisting of wireless sensor nodes. We build IoT-SIS, a novel propagation model which considers the impact of IoT-specific characteristics like limited processing power, energy restrictions, and node density on the formation of a botnet. Focusing on worm-based propagation, this model is used to explore the dynamics of spread using numerical simulations and the Monte Carlo method, and to discuss the real-life implications of our findings
HP-sequence design for lattice proteins - an exact enumeration study on diamond as well as square lattice
We present an exact enumeration algorithm for identifying the {\it native}
configuration - a maximally compact self avoiding walk configuration that is
also the minimum energy configuration for a given set of contact-energy
schemes; the process is implicitly sequence-dependent. In particular, we show
that the 25-step native configuration on a diamond lattice consists of two
sheet-like structures and is the same for all the contact-energy schemes,
; on a square lattice also, the
24-step native configuration is independent of the energy schemes considered.
However, the designing sequence for the diamond lattice walk depends on the
energy schemes used whereas that for the square lattice walk does not. We have
calculated the temperature-dependent specific heat for these designed sequences
and the four energy schemes using the exact density of states. These data show
that the energy scheme is preferable to the other three for both
diamond and square lattice because the associated sequences give rise to a
sharp low-temperature peak. We have also presented data for shorter (23-, 21-
and 17-step) walks on a diamond lattice to show that this algorithm helps
identify a unique minimum energy configuration by suitably taking care of the
ground-state degeneracy. Interestingly, all these shorter target configurations
also show sheet-like secondary structures.Comment: 19 pages, 7 figures (eps), 11 tables (latex files
Recommended from our members
Secure Anonymous Routing for MANETs Using Distributed Dynamic Random Path Selection
Most of the MANET security research has so far focused on providing routing security and confidentiality to the data packets, but less has been done to ensure privacy and anonymity of the communicating entities. In this paper, we propose a routing protocol which ensures anonymity, privacy of the user. This is achieved by randomly selecting next hop at each intermediate. This protocol also provides data security using public key ciphers. The protocol is simulated using in-house simulator written in C with OpenSSL crypto APIs. The robustness of our protocol is evaluated against known security attacks
Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain
Unmanned aerial vehicles (UAVs) can support surveillance even in areas without network infrastructure. However, UAV networks raise security challenges because of its dynamic topology. This paper proposes a technique for maintaining security in UAV networks in the context of surveillance, by corroborating information about events from different sources. In this way, UAV networks can conform peer-to-peer information inspired by the principles of blockchain, and detect compromised UAVs based on trust policies. The proposed technique uses a secure asymmetric encryption with a pre-shared list of official UAVs. Using this technique, the wrong information can be detected when an official UAV is physically hijacked. The novel agent based simulator ABS-SecurityUAV is used to validate the proposed approach. In our experiments, around 90% of UAVs were able to corroborate information about a person walking in a controlled area, while none of the UAVs corroborated fake information coming from a hijacked UAV
Recommended from our members
Evaluating the Provision of Botnet Defences using Translational Research Concepts.
Botnet research frequently draws on concepts from other fields. An example is the use of epidemiological models when studying botnet propagation, which facilitate an understanding of bot spread dynamics and the exploration of behavioural theory. Whilst the literature is rich with these models, it is lacking in work aimed at connecting the insights of theoretical research with day-to-day practice. To address this, we look at botnets through the lens of implementation science, a discipline from the field of translational research in health care, which is designed to evaluate the implementation process. In this paper, we explore key concepts of implementation science, and propose a framework-based approach to improve the provision of security measures to network entities. We demonstrate the approach using existing propagation models, and discuss the role of implementation science in malware defence
Recommended from our members
Dynamic virtual private network provisioning from multiple cloud infrastructure service providers
The Cloud infrastructure service providers currently provision basic virtualized computing resources as on demand and dynamic services but there is no common framework in existence that allows the seamless provisioning of even these basic services across multiple cloud service providers, although this is not due to any inherent incompatibility or proprietary nature of the foundation technologies on which these cloud platforms are built. We present a solution idea which aims to provide a dynamic and service oriented provisioning of secure virtual private networks on top of multiple cloud infrastructure service providers. This solution leverages the benefits of peer to peer overlay networks, i.e., the flexibility and scalability to handle the churn of nodes joining and leaving the VPNs and can adapt the topology of the VPN as per the requirements of the applications utilizing its intercloud secure communication framework
Recommended from our members
Secure communication using dynamic VPN provisioning in an Inter-Cloud environment
Most of the current cloud computing platforms offer Infrastructure as a Service (IaaS) model, which aims to provision basic virtualised computing resources as on-demand and dynamic services. Nevertheless, a single cloud does not have limitless resources to offer to its users, hence the notion of an Inter-Cloud enviroment where a cloud can use the infrastructure resources of other clouds. However, there is no common framework in existence that allows the srevice owners to seamlessly provision even some basic services across multiple cloud service providers, albeit not due to any inherent incompatibility or proprietary nature of the foundation technologies on which these cloud platforms are built. In this paper we present a novel solution which aims to cover a gap in a subsection of this problem domain. Our solution offer a security architecture that enables service owners to provision a dynamic and service-oriented secure virtual private network on top of multiple cloud IaaS providers. It does this by leveraging the scalability, robustness and flexibility of peer- to-peer overlay techniques to eliminate the manual configuration, key management and peer churn problems encountered in setting up the secure communication channels dynamically, between different components of a typical service that is deployed on multiple clouds. We present the implementation details of our solution as well as experimental results carried out on two commercial clouds
Recommended from our members
R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data
In the recent past, few works have been done by combining attribute-based access control with multi-user PEKS, i.e., public key encryption with keyword search. Such attribute enabled searchable encryption is most suitable for applications where the changing of privileges is done once in a while. However, to date, no efficient and secure scheme is available in the literature that is suitable for these applications where changing privileges are done frequently. In this paper our contributions are twofold. Firstly, we propose a new PEKS scheme for string search, which, unlike the previous constructions, is free from bi-linear mapping and is efficient by 97% compared to PEKS for string search proposed by Ray et.al in TrustCom 2017. Secondly, we introduce role based access control (RBAC) to multi-user PEKS, where an arbitrary group of users can search and access the encrypted files depending upon roles. We termed this integrated scheme as R-PEKS. The efficiency of R-PEKS over the PEKS scheme is up to 90%. We provide formal security proofs for the different components of R-PEKS and validate these schemes using a commercial dataset
- …
