176 research outputs found
Cold formed steel storage racks subjected to axial, shear and bending interactions
This research article aims to study the behaviour of expansion bolts under axial, shear and bending interaction of base plate connected cold form steel storage racks. The bilinear moment rotation relationship was adopted to identify the ultimate moment of resistance and stiffness of the base plate connected to a concrete block using M10 grade anchor bolt at different range of axial loads ranging from 25% to 100% there by the design strength of upright profile was studied. The dimension of the upright and the base plate thickness has to be changed so that the extreme stability under various ranges of axial and transverse loads had been studied. Using finite element analysis software (Abaqus), a model has been created and designed to observe moment rotation characteristics, behaviour of base plate under simultaneous axial, shear and bending interactions and compared with experimental analysis. Comparative studies reveal that there was no failure in the concrete block and when the upright thickness increases, the stiffness and moment of the base plate increases despite having a similar cross section. An interaction equation was developed to find the stiffness and ultimate moment of resistance of the base plate connection
Evaluation of variability and principal component analysis in segregating populations of groundnut (Arachis hypogaea L.)
Groundnut is a favourable and profitable crop for resource-poor farmers in Africa and Asia, both for edible oil production and direct consumption. There is significant potential to breed high-yielding, better-quality groundnut cultivars by generating new variations through artificial techniques. In this study, the F2 generations of the crosses CO 7 × Chico and ICGV 07222 × Chico was analysed to assess the variability created through artificial hybridization in groundnut. The various yield and yield-related traits were analysed to estimate genetic parameters, skewness, kurtosis and subjected to principal component analysis (PCA). The variability study of the F2 population from both crosses revealed significant variations for the traits under study. The traits “days to accumulation of 25 flowers” and “shelling %” showed low GCV (genotypic coefficient of variation) and PCV (phenotypic coefficient of variation) in both populations. Most traits exhibited moderate to high heritability and genetic advance, whereas “days to accumulation of 25 flowers” and “maturity duration” had moderate heritability and low genetic advance. Only shelling % had low estimates of heritability and genetic advances. Tests for skewness and kurtosis revealed that both F2 population did not follow a normal distribution. The traits “days to maturity”, “shelling %”, “kernel yield,” and “hundred kernel weight” displayed significant positive skewness. The traits “days to accumulation of 25 flowers”, “number of matured pods”, “height of main axis”, “shelling %”, “hundred pods” and “hundred kernel weight” and “pod yield” showed platy- kurtosis, while “Kernel yield” displayed lepto-kurtosis in both populations. The first principal component explained 37 % and 32 % of the total variance in the 2 F2 populations respectively, with a focus on yield-related traits. The PCA biplot effectively clustered the genotypes based on the 10 different traits studied and clearly, grouped the population based on maturity duration. Thus, hybridization created significant variation in groundnut for all yield-related traits and yield, except for “days to maturity”. The traits require further enhancement using additional sources and could be improved through intense selection
Artificial neural network–genetic algorithm-based optimization of biodiesel production from Simarouba glauca
A transesterification reaction was carried out employing an oil of paradise kernel (Simarouba glauca), a non-edible source for producing Simarouba glauca methyl ester (SGME) or biodiesel. In this study, the effects of three variables – reaction temperature, oil-to-alcohol ratio and reaction time – were studied and optimized using response surface methodology (RSM) and an artificial neural network (ANN) on the free fatty acid (FFA) level. Formation of methyl esters due to a reduction in FFA was observed in gas chromatography–mass spectroscopy (GC–MS) analysis. It was inferred that optimum conditions such as an oil-to-alcohol ratio of 1:6.22, temperature of 67.25 and duration of 20 h produce a better yield of biodiesel with FFA of 0.765 ± 0.92%. The fuel properties of paradise oil meet the requirements for biodiesel, by Indian standards. The results indicate that the model is in substantial agreement with current research, and simarouba oil can be considered a potential oil source for biodiesel production
Five Canalled and Three-Rooted Primary Second Mandibular Molar
A thorough knowledge of root canal anatomy and its variation is necessary for successful completion of root canal procedures. Morphological variations such as additional root canals in human deciduous dentition are rare. A mandibular second primary molar with more than four canals is an interesting example of anatomic variations, especially when three of these canals are located in the distal root. This case shows a rare anatomic configuration and points out the importance of looking for additional canals
Sustainable integrated weed control strategies to reduce herbicide use in sunflower production
This research aims to develop integrated weed control strategies that can effectively reduce the quantity of herbicides used in cultivation of sunflower. To address the challenge of weed management in mechanized crop fields and mitigate the adverse effects on the ecosystem, an experiment with 10 treatments was arranged in randomized block designs and replicated 3 times. The treatments included combinations of herbicide application, band application of herbicide and power weeder weeding. The higher weed control efficiency (WCE) was achieved in a weed-free environment. Additionally, higher WCE was observed in the treatment where weeds were managed through band application of pendimethalin (38.7 capsule suspension (CS)) in the seed row as a pre-emergence method and weeding was done with a power weeder twice. These 2 treatments registered more than 90 % WCE due to lesser weed occurrence. The present investigation also registered higher grain yield under weed-free control (2212 kg/ha). It was tailed by Pre-emergence (PE) herbicide (1 kg/ha of Pendimethalin (38.7 CS)) in seed row after irrigation followed by (fb) power weeder twice (on 15-20 and 30-35 DAS), PE herbicide (1 kg/ha of Pendimethalin (38.7 CS)) in seed row before irrigation fb power weeder twice (on 15-20 and 30-35 DAS) and PE herbicide (1 kg/ha of Pendimethalin (30 EC)) in seed row after irrigation fb power weeder twice (on 15-20 and 30-35 days after sowing (DAS)). Based on the results, pendimethalin (38.7 CS) can also be applied either before or after irrigation, as it will not significantly lose its efficacy in controlling weeds. These findings have practical implications for sunflower cultivation, offering effective strategies for integrated weed control
Low voltage CMOS power amplifier with integrated analog pre-distorter for BLE 4.0 application
In this paper, a low power consumption linear power amplifier (PA) for Bluetooth Low Energy (BLE) application is presented. An analogue pre-distorter (APD) is integrated to the PA. The APD consist of an active inductor, driver amplifier, and a RC phase linearizer. The PA delivers more than 12dB power gain from 2.4GHz to 2.5GHz. At the center frequency of 2.45GHz, the gain of the PA is 13dB with PAE of 26.7% and maximum output power of 14dBm. The corresponding OIP3 is 27.6dBm. The supply voltage headroom of this PA is 1.8V. The propose APD serves to be a solution to improve the linearity of the PA with minimum trade-off to the power consumption
Aminoguanidinium hydrogen fumarate
The title compound, CH7N4
+·C4H3O4
−, is a molecular salt in which the aminoguanidinium cations and fumarate monoanions are close to planar, with maximum deviations of 0.011 (1) and 0.177 (1) Å, respectively. The crystal packing is stabilized by intermolecular N—H⋯O and O—H⋯O hydrogen bonds
Sono-alternating current-electro-Fenton process for the removal of color, COD and determination of power consumption from distillery industrial wastewater
In this study, a variety of electrochemical and advanced oxidation processes (AOPs), such as sono (US), US/
hydrogen peroxide (H2O2), direct/alternating current-electro-Fenton (DCEF / ACEF), and sono-direct/alternating
current-electro-Fenton (US + DCEF / US + ACEF) processes were compared in terms of their ability to remove a
certain percentage of color and chemical oxygen demand (COD) from distillery industrial wastewater (DIW), as
well as their impact on the amount of power required to treat the wastewater. According to experimental
findings, the hybrid US + ACEF process produced complete color-100% and COD-100% removal efficiencies with
a lower power consumption of 3.40kWhr m− 3 than single like US, DCEF, ACEF processes, and hybrid US/H2O2
and US + DCEF processes. The consequences of significant operational parameters such as treatment time
(30–210 min), sonication power (20–100 W) current density (0.1–0.6A dm− 2
), pH (1–5), COD concentration
(1500–7500 mg L− 1
), inter-electrode distance (1–4 cm), H2O2 concentration (100–350 mg L− 1
), pulse duty cycle
(0.14–1.00) and combination of electrode (Al/Fe, Al/Al, Fe/Fe, Fe/Al) on the % COD removal efficiency and
power consumption of DIW were investigated by using hybrid US + ACEF process. The synergistic index and
water recovery between US and ACEF process were also investigated and reported in this work. When compared
to the other processes, the US + ACEF method is the most appropriate since it can be used effectively and
efficiently to remove pollutants from wastewater and industrial effluent
- …
