70 research outputs found

    Start codon-targeted marker evaluation of genetic relationship and population structure in southern Nigerian fluted pumpkin (Telfairia occidentalis Hook F.) collection

    Get PDF
    Fluted pumpkin (Telfairia occidentalis Hook F.) is an underutilized indigenous leafy vegetable with enormous prospects for food security in sub-Saharan Africa. However, relatively little is known about genetic relationships and population structure in the species. In this study, 32 landraces of fluted pumpkin collected across three southern geographical regions in Nigeria were assessed for genetic diversity and population structure using 8 start codontargeted (SCoT) makers. The polymorphic information content of the SCoT markers ranged from 0.48 in SCoT36 to 0.94 in SCoT28, with an average of 0.77. Hierarchical cluster dendrogram based on Ward's method and principal component analysis grouped the landraces into four clusters without affiliation to provenance. Overall, the mean values of the population genetic diversity parameters – Nei's gene diversity (H) and Shannon's information index (I) showed values of 0.28 ± 0.01 and 0.43 ± 0.02, respectively, implying a narrow genetic base for the landraces. The result was further corroborated by a very close Nei's genetic distance and identity among populations of the landraces. Furthermore, the south-west population exhibited the higher genetic diversity (H = 0.31 ± 0.02 and I = 0.45 ± 0.03). Population structure analysis inferred three subpopulations for the accessions with varying degrees of allelic admixture. An analysis of molecular variance revealed that almost all the genetic variation occurred within (99%) than between (1%) populations. The findings shed light on the genetic diversity of southern Nigerian fluted pumpkin and have significant implications for the characterisation, conservation, exploitation and improvement of the species

    Genome-Wide Association Study Revealed SNP Alleles Associated with Seed Size Traits in African Yam Bean (<i>Sphenostylis stenocarpa</i> (Hochst ex. A. Rich.) Harms)

    No full text
    Seed size is an important yield and quality-determining trait in higher plants and is also crucial to their evolutionary fitness. In African yam bean (AYB), seed size varies widely among different accessions. However, the genetic basis of such variation has not been adequately documented. A genome-wide marker-trait association study was conducted to identify genomic regions associated with four seed size traits (seed length, seed width, seed thickness, and 100-seed weight) in a panel of 195 AYB accessions. A total of 5416 SNP markers were generated from the diversity array technology sequence (DArTseq) genotype-by-sequencing (GBS)- approach, in which 2491 SNPs were retained after SNP quality control and used for marker-trait association analysis. Significant phenotypic variation was observed for the traits. Broad-sense heritability ranged from 50.0% (seed width) to 66.4% (seed length). The relationships among the traits were positive and significant. Genome-wide association study (GWAS) using the general linear model (GLM) and the mixed linear model (MLM) approaches identified 12 SNP markers significantly associated with seed size traits across the six test environments. The 12 makers explained 6.5–10.8% of the phenotypic variation. Two markers (29420334|F|0-52:C>G-52:C>G and 29420736|F|0-57:G>T-57:G>T) with pleiotropic effects associated with seed width and seed thickness were found. A candidate gene search identified five significant markers (100026424|F|0-37:C>T-37:C>T, 100041049|F|0-42:G>C-42:G>C, 100034480|F|0-31:C>A-31:C>A, 29420365|F|0-55:C>G-55:C>G, and 29420736|F|0-57:G>T-57:G>T) located close to 43 putative genes whose encoding protein products are known to regulate seed size traits. This study revealed significant makers not previously reported for seed size in AYB and could provide useful information for genomic-assisted breeding in AYB

    Genome-Wide Association Study Revealed SNP Alleles Associated with Seed Size Traits in African Yam Bean (Sphenostylis stenocarpa (Hochst ex. A. Rich.) Harms)

    No full text
    Seed size is an important yield and quality-determining trait in higher plants and is also crucial to their evolutionary fitness. In African yam bean (AYB), seed size varies widely among different accessions. However, the genetic basis of such variation has not been adequately documented. A genome-wide marker-trait association study was conducted to identify genomic regions associated with four seed size traits (seed length, seed width, seed thickness, and 100-seed weight) in a panel of 195 AYB accessions. A total of 5416 SNP markers were generated from the diversity array technology sequence (DArTseq) genotype-by-sequencing (GBS)- approach, in which 2491 SNPs were retained after SNP quality control and used for marker-trait association analysis. Significant phenotypic variation was observed for the traits. Broad-sense heritability ranged from 50.0% (seed width) to 66.4% (seed length). The relationships among the traits were positive and significant. Genome-wide association study (GWAS) using the general linear model (GLM) and the mixed linear model (MLM) approaches identified 12 SNP markers significantly associated with seed size traits across the six test environments. The 12 makers explained 6.5&ndash;10.8% of the phenotypic variation. Two markers (29420334|F|0-52:C&gt;G-52:C&gt;G and 29420736|F|0-57:G&gt;T-57:G&gt;T) with pleiotropic effects associated with seed width and seed thickness were found. A candidate gene search identified five significant markers (100026424|F|0-37:C&gt;T-37:C&gt;T, 100041049|F|0-42:G&gt;C-42:G&gt;C, 100034480|F|0-31:C&gt;A-31:C&gt;A, 29420365|F|0-55:C&gt;G-55:C&gt;G, and 29420736|F|0-57:G&gt;T-57:G&gt;T) located close to 43 putative genes whose encoding protein products are known to regulate seed size traits. This study revealed significant makers not previously reported for seed size in AYB and could provide useful information for genomic-assisted breeding in AYB

    Genetic Diversity and Population Structure of some Nigerian Accessions of Bambara Groundnut (Vigna subterranea (L.) Verdc) using DArT SNP Markers

    No full text
    Abstract Bambara groundnut is one of the crops with inadequate molecular research to show its full potentials. Previous studies showed morphological diversity with inadequate information to confirm genetic variations. In the quest to reveal the genetic potentials, deoxyribonucleic acid (DNA) of the selected accessions were extracted through leaf samples at 3 weeks old, using Dellaporta Miniprep for Plant DNA Isolation procedure. The high quality DNA was sequenced using Diversity Arrays Technology (DArT) markers to unlock diversity among Bambara groundnut of Nigerian origin. Cluster analysis (neighbor-joining clustering) of the single nucleotide polymorphisms (SNP’s) were used to generate sub-population to show relatedness and differences. Seven sub-populations were generated with 5,927 (50.13 %) high quality DArT markers out of the 11, 821 SNPs generated. This revealed high genetic diversity existed among the selected Bambara groundnut accessions in Nigeria. This also revealed that DArT markers were highly efficient in classifying the accessions based on molecular expressions. This study also identified markers responsible for genetic variation that could facilitate the characterization of larger collections for further utilization of genetic resources and most importantly Bambara groundnut for the purpose of crop improvement.</jats:p

    Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells

    Get PDF
    AbstractHuman pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 106 cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5+ and TRA-1-60+ cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications

    Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) Using Cowpea SSR Markers

    No full text
    African yam bean (Sphenostylis stenocarpa Hochst, Ex. A. Rich. Harms) is an important grain legume in Sub-Saharan Africa because of its nutritional value and adaptability to various agroecological zones. To foster the varietal development of improved African yam bean (AYB) genotypes with economic traits, it is necessary to validate parental polymorphism for key markers in selecting progenies from crosses between desired parents. This study aims to analyze the genetic fidelity between parents and F1 progenies in African yam bean through putative cowpea simple sequence repeat (SSR) markers. Hence, a total of seventy-seven progenies were derived from four sets of biparental crossings using drought-susceptible (TSs-96, TSs-363, and TSs-274) and drought-tolerant (TSs-417, TSs-111, and TSs-78) AYB accessions. These were validated using 120 cowpea primers targeting SSRs under optimal PCR conditions, and the size of the PCR-amplified DNA fragments was checked using gel electrophoresis. Twenty primers exhibited polymorphism in the parental lines, while ten displayed higher levels of the same polymorphism. The average polymorphism level for the surveyed SSR markers was 0.36. Given these findings, our study demonstrates that cowpea SSR markers are a reliable method for the regular testing and clear identification of AYB crosses, indicating potential AYB improvements
    corecore