4,208 research outputs found

    Quaternion Gravi-Electromagnetism

    Full text link
    Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.Comment: Key Words: Quaternion, dyons, gravito-dyons, gravi-electromagnetism. PACS No.: 04.90. +e ; 14.80. H

    Unified Angular Momentum of Dyons

    Full text link
    Unified quaternionic angular momentum for the fields of dyons and gravito-dyons has been developed and the commutation relations for dynamical variables are obtained in compact and consistent manner. Demonstrating the quaternion forms of unified fields of dyons (electromagnetic fields) and gravito-dyons (gravito-Heavisidian fields of linear gravity), corresponding quantum equations are reformulated in compact, simpler and manifestly covariant way

    Is Parkinson's disease a vesicular dopamine storage disorder?: Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum

    Get PDF
    The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson’s disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [ 3H]dihydrotetrabenazine were profoundly reduced in PD by 87–90% and 71– 80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in P

    Modulated structure in the martensite phase of Ni1.8Pt0.2MnGa: a neutron diffraction study

    Full text link
    7M orthorhombic modulated structure in the martensite phase of Ni1.8Pt0.2MnGa is reported by powder neutron diffraction study, which indicates that it is likely to exhibit magnetic field induced strain. The change in the unit cell volume is less than 0.5% between the austenite and martensite phases, as expected for a volume conserving martensite transformation. The magnetic structure analysis shows that the magnetic moment in the martensite phase is higher compared to Ni2MnGa, which is in good agreement with magnetization measurement

    Elucidating the Structure of the Magnesium Aluminum Chloride Complex electrolyte for Magnesium-ion batteries

    Full text link
    We present a rigorous analysis of the Magnesium Aluminum Chloro Complex (MACC) in tetrahydrofuran (THF), one of the few electrolytes that can reversibly plate and strip Mg. We use \emph{ab initio} calculations and classical molecular dynamics simulations to interrogate the MACC electrolyte composition with the goal of addressing two urgent questions that have puzzled battery researchers: \emph{i}) the functional species of the electrolyte, and \emph{ii}) the complex equilibria regulating the MACC speciation after prolonged electrochemical cycling, a process termed as conditioning, and after prolonged inactivity, a process called aging. A general computational strategy to untangle the complex structure of electrolytes, ionic liquids and other liquid media is presented. The analysis of formation energies and grand-potential phase diagrams of Mg-Al-Cl-THF suggests that the MACC electrolyte bears a simple chemical structure with few simple constituents, namely the electro-active species MgCl+^+ and AlCl4_4^- in equilibrium with MgCl2_2 and AlCl3_3. Knowledge of the stable species of the MACC electrolyte allows us to determine the most important equilibria occurring during electrochemical cycling. We observe that Al deposition is always preferred to Mg deposition, explaining why freshly synthesized MACC cannot operate and needs to undergo preparatory conditioning. Similarly, we suggest that aluminum displacement and depletion from the solution upon electrolyte resting (along with continuous MgCl2_2 regeneration) represents one of the causes of electrolyte aging. Finally, we compute the NMR shifts from shielding tensors of selected molecules and ions providing fingerprints to guide future experimental investigations

    Generalized Gravi-Electromagnetism

    Full text link
    A self consistant and manifestly covariant theory for the dynamics of four charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has been developed in simple, compact and consistent manner. Starting with an invariant Lagrangian density and its quaternionic representation, we have obtained the consistent field equation for the dynamics of four charges. It has been shown that the present reformulation reproduces the dynamics of individual charges (masses) in the absence of other charge (masses) as well as the generalized theory of dyons (gravito - dyons) in the absence gravito - dyons (dyons). key words: dyons, gravito - dyons, quaternion PACS NO: 14.80H

    Non elliptic SPDEs and ambit fields: existence of densities

    Full text link
    Relying on the method developed in [debusscheromito2014], we prove the existence of a density for two different examples of random fields indexed by (t,x)\in(0,T]\times \Rd. The first example consists of SPDEs with Lipschitz continuous coefficients driven by a Gaussian noise white in time and with a stationary spatial covariance, in the setting of [dalang1999]. The density exists on the set where the nonlinearity σ\sigma of the noise does not vanish. This complements the results in [sanzsuess2015] where σ\sigma is assumed to be bounded away from zero. The second example is an ambit field with a stochastic integral term having as integrator a L\'evy basis of pure-jump, stable-like type.Comment: 23 page

    Origin of Ferroelectricity in Orthorhombic LuFeO3_3

    Full text link
    We demonstrate that small but finite ferroelectric polarization (\sim0.01 μ\muC/cm2^2) emerges in orthorhombic LuFeO3_3 (PnmaPnma) at TNT_N (\sim600 K) because of commensurate (k = 0) and collinear magnetic structure. The synchrotron x-ray and neutron diffraction data suggest that the polarization could originate from enhanced bond covalency together with subtle contribution from lattice. The theoretical calculations indicate enhancement of bond covalency as well as the possibility of structural transition to the polar Pna21Pna2_1 phase below TNT_N. The Pna21Pna2_1 phase, in fact, is found to be energetically favorable below TNT_N in orthorhombic LuFeO3_3 (albeitalbeit with very small energy difference) than in isostructural and nonferroelectric LaFeO3_3 or NdFeO3_3. Application of electric field induces finite piezostriction in LuFeO3_3 via electrostriction resulting in clear domain contrast images in piezoresponse force microscopy.Comment: 12 pages, 8 figure
    corecore