1,068 research outputs found
Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis
Shallow water coral reefs may experience hypoxia under conditions of calm weather doldrums. Anaerobic responses of endosymbionts (i.e. zooxanthellae) within Pocillopora damicornis coral colonies were tested using both slow and fast chlorophyll a fluorescence induction kinetics. Zooxanthellae were examined in hospite when exposed to control conditions (26°C, 200 μmol photons m-2 s-1, 100% air-saturation, 4 cm s-1 flow) and to 2 treatments of reduced air content (40 and 0%), achieved by controlling the N2:O2 ratio in water circulating at 2 cm s -1. Furthermore, the impact of water flow on photosynthesis was examined at 0% air saturation by turning off the flow entirely (0 cm s -1), thereby mimicking the environmental conditions of calm weather doldrums. Corals exposed to depleted air content (0 % with and without flow) showed a significant decrease (p < 0.001) in effective quantum yield (φPSII) in comparison with controls. Maximum quantum yield was significantly reduced when gas exchange was inhibited (0% without flow), whereas non-photochemical quenching (NPQ) was not affected. Fast polyphasic fluorescence transients of chlorophyll a fluorescence showed a significant increase in minimum dark-adapted fluorescence, F0, when corals were exposed to anaerobic conditions. Furthermore, an increase in the J peak (2 ms) corresponding to the reduction of the primary electron acceptor, QA, was observed in 0% air-saturation with flow. We found that the most sensitive parameters for detecting physiological change associated with hypoxia were φPSII using slow (pulse-amplitude modulation) fluorescence kinetics, as well as an increase in the O peak, φPo(electron transport efficiency before QA), and an elevation of the J peak on a double-normalised transient using fast (Plant Efficiency Analyser) induction kinetics. © Inter-Research 2005
Photosynthesis and net primary productivity in three Antarctic diatoms: Possible significance for their distribution in the Antarctic marine ecosystem
Photosynthesis and net primary productivity were measured in 3 Antarctic diatoms, Fragilariopsis cylindrus, Pseudo-nitzschia subcurvata and Chaetoceros sp., exposed to rapid changes in temperature and salinity representing a range of conditions found during a seasonal cycle. Measured differences in fluorescence-derived photosynthetic activity and oxygen evolution suggested that some alternative electron cycling activity was present under high irradiances. F. cylindrus displayed the highest rates of relative electron transport and net primary productivity under all salinity and temperature combinations and showed adaptive traits towards the sea-icelike environment. P. subcurvata displayed a preference for low saline conditions where production rates were greatest. However, there was evidence of photosynthetic sensitivity to the lowest temperatures and highest salinities, suggesting a lack of adaptation for dealing with sea-ice-like conditions. Chaetoceros sp. showed high plasticity, acclimating well to all conditions but performing best under pelagic conditions. The study shows species-specific sensitivities to environmental change, highlighting photosynthetic capacity as a potentially important mechanism in ecological niche adaptation. When these data were modelled over different seasons, integrated daily net primary production was greatest under summer pelagic conditions. The findings from this study support the general observations of light control and seasonal development of net primary productivity and species succession in the Antarctic marine ecosystem. © Inter-Research 2011
Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy
It has been proposed that corals with symbiotic algae (Symbiodinium) bleach under thermal stress due to temperature-dependent inactivation of the Rubisco protein that impairs CO2 uptake, causing a backlog of electrons that result in the formation of damaging Reactive Oxygen Species. We present a numerical model of this mechanism of photoinhibition for symbiotic algae residing within coral tissue. The resulting rate of bleaching depended on temperature, light intensity, and the rate of heterotrophic feeding. The model was validated using three independently published experimental data sets. The model was capable of capturing both the diurnal change in the state of the photosystem, as well as changes in the symbiont population and the coral host caused by different temperature, light, and feeding treatments. Elevated temperatures and light led to a degradation of the photosystem and the expulsion of symbiont cells. If the coral fed heterotrophically, this degradation of the photosynthetic apparatus was reduced, but still a clear decrease in maximum quantum yield (Fv: Fm) and cell numbers was observed when the coral was exposed to elevated temperature. The reduction in chlorophyll content of cells at elevated temperatures and light was compared with the observational bleaching index Degree Heating Days (DHD). As quantified by DHD, the model was found to bleach under similar thermal stress regimes as field studies, except under elevated heterotrophic feeding conditions, which resulted in reduced severity of bleaching over a 90 d period. © 2014, by the Association for the Sciences of Limnology and Oceanography, Inc
Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent
While a number of factors have been linked to coral bleaching, such as high light, high temperature, low salinity, and UV exposure, the best explanation for recent coral bleaching events are small temperature excursions of 1 to 2°C above summer sea-surface temperatures in the tropics which induce the dinoflagellate symbionts (zooxanthellae) to be expelled from the host. The mechanism that triggers this expulsion of the algal symbionts is not resolved, but has been attributed to damage to the photosynthetic mechanism of the zooxanthellae. In the present investigation we addressed the question of whether such expelled zooxanthellae are indeed impaired irreversibly in their photosynthesis. We employed a Microscopy Pulse Amplitude-Modulated (PAM) fluorometer, by which individual zooxanthellae can be examined to study photosynthesis in zooxanthellae expelled when corals are subjected to a temperature of 33°C. We show that the expelled zooxanthellae from Cyphastrea serailia were largely unaffected in their photosynthesis and could be heated to 37°C before showing temperature-induced photosynthetic impairment. These results suggest strongly that the early events that trigger temperature-induced expulsion of zooxanthellae involve a dysfunction in the interaction of the zooxanthellae and the coral host tissue, and not a dysfunction in the zooxanthellae per se
The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex
Iron availability strongly governs the growth of Southern Ocean phytoplankton. To investigate how iron limitation affects photosynthesis as well as the uptake of carbon and iron in the Antarctic diatom Chaetoceros simplex, a combination of chlorophyll a fluorescence measurements and radiotracer incubations in the presence and absence of chemical inhibitors was conducted. Iron limitation in C. simplex led to a decline in growth rates, photochemical efficiency and structural changes in photosystem II (PSII), including a reorganisation of photosynthetic units in PSII and an increase in size of the functional absorption cross section of PSII. Iron-limited cells further exhibited a reduced plastoquinone pool and decreased photosynthetic electron transport rate, while non-photochemical quenching and relative xanthophyll pigment content were strongly increased, suggesting a photoprotective response. Additionally, iron limitation resulted in a strong decline in carbon fixation and thus the particulate organic carbon quotas. Inhibitor studies demonstrated that, independent of the iron supply, carbon fixation was dependent on internal, but not on extracellular carbonic anhydrase activity. Orthovanadate more strongly inhibited iron uptake in iron-limited cells, indicating that P-type ATPase transporters are involved in iron uptake. The stronger reduction in iron uptake by ascorbate in iron-limited cells suggests that the re-oxidation of iron is required before it can be taken up and further supports the presence of a high-affinity iron transport pathway. The measured changes to photosystem architecture and shifts in carbon and iron uptake strategies in C. simplex as a result of iron limitation provide evidence for a complex interaction of these processes to balance the iron requirements for photosynthesis and carbon demand for sustained growth in iron-limited waters. © 2014 The Author(s)
Desiccation stress in two intertidal beachrock biofilms
© Springer-Verlag Berlin Heidelberg 2014. Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid and complete recovery upon rehydration. In contrast, the pink biofilm from the mid-intertidal zone, dominated by Blennothrix sp., showed no distinct response to desiccation stress and instead maintained reduced photosynthesis throughout drying and re-wetting cycles. Spatial differences in photosynthetic activity within the black biofilm were evident with a faster recovery rate of photosynthesis in the surface cyanobacteria than in the deeper layers of the biofilm. There was no variation with depth in the pink biofilm. The photophysiological differences in desiccation responses between the beachrock biofilms exemplify the ecological niche specialisation of these complex microbial communities, where the functional differences help to explain their vertical distribution on the intertidal shoreline
Potential for adaptation in response to thermal stress in an intertidal macroalga
Understanding responses of marine algae to changing ocean temperatures requires knowledge of the impacts of elevated temperatures and the likelihood of adaptation to thermal stress. The potential for rapid evolution of thermal tolerance is dependent on the levels of heritable genetic variation in response to thermal stress within a population. Here, we use a quantitative genetic breeding design to establish whether there is a heritable variation in thermal sensitivity in two populations of a habitat-forming intertidal macroalga, Hormosira banksii (Turner) Descaisne. Gametes from multiple parents were mixed and growth and photosynthetic performance were measured in the resulting embryos, which were incubated under control and elevated temperature (20°C and 28°C). Embryo growth was reduced at 28°C, but significant interactions between male genotype and temperature in one population indicated the presence of genetic variation in thermal sensitivity. Selection for more tolerant genotypes thus has the ability to result in the evolution of increased thermal tolerance. Furthermore, genetic correlations between embryos grown in the two temperatures were positive, indicating that those genotypes that performed well in elevated temperature also performed well in control temperature. Chlorophyll a fluorescence measurements showed a marked decrease in maximum quantum yield of photosystem II (PSII) under elevated temperature. There was an increase in the proportion of energy directed to photoinhibition (nonregulated nonphotochemical quenching) and a concomitant decrease in energy used to drive photochemistry and xanthophyll cycling (regulated nonphotochemical quenching). However, PSII performance between genotypes was similar, suggesting that thermal sensitivity is related to processes other than photosynthesis. © 2013 Phycological Society of America
Mechanisms influencing the spread of a native marine alga
Like invasive macrophytes, some native macrophytes are spreading rapidly with consequences for community structure. There is evidence that the native alga Caulerpa filiformis is spreading along intertidal rocky shores in New South Wales, Australia, seemingly at the expense of native Sargassum spp. We experimentally investigated the role physical disturbance plays in the spread of C. filiformis and its possible consequences for Sargassum spp. Cleared patches within beds of C. filiformis (Caulerpa habitat) or Sargassum spp. (Sargassum habitat) at multiple sites showed that C. filiformis had significantly higher recruitment (via propagules) into its own habitat. The recruitment of Sargassum spp. to Caulerpa habitat was rare, possibly due in part to sediment accretion within Caulerpa habitat. Diversity of newly recruited epibiotic assemblages within Caulerpa habitat was significantly less than in Sargassum habitat. In addition, more C. filiformis than Sargassum spp. recruited to Sargassum habitat at some sites. On common boundaries between these two macroalgae, the vegetative growth of adjacent C. filiformis into cleared patches was significantly higher than for adjacent Sargassum spp. In both experiments, results were largely independent of the size of disturbance (clearing). Lastly, we used PAM fluorometry to show that the photosynthetic condition of Sargassum spp. fronds adjacent to C. filiformis was generally suppressed relative to those distant from C. filiformis. Thus, physical disturbance, combined with invasive traits (e.g. high levels of recruitment and vegetative growth) most likely facilitate the spread of C. filiformis, with the ramifications being lower epibiotic diversity and possibly reduced photosynthetic condition of co-occurring native macrophytes. © 2014 Zhang et al
Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals
Seasonal variation in the composition of the algal endosymbiont community and photophysiology was determined in the corals Pocillopora damicornis, which show high local fidelity to one symbiont type (Symbiodinium C1), and Acropora valida, with a mixed Symbiodinium symbiont community, comprising members of both clades A and C. The relative abundances of Symbiodinium types varied over time. A significant decline in symbiont densities in both coral species during the summer of 2005 coincided with a NOAA 'hotspot' warning for Heron Island. This also coincided with a relative increase in the presence and dominance of clade A in A. valida, particularly in sun-adapted surfaces. The effective quantum yield of Photosystem II (ΦPSII) suggested that sun-adapted surfaces of P. damicornis are more sensitive than shade-adapted surfaces to combined effects of higher temperature and irradiance in summer. Xanthophyll cycling was greater in P. damicornis than A. valida, irrespective of branch position and sampling time; this may be a mechanism by which P. damicornis compensates for its fidelity to Symbiodinium C1. Furthermore, xanthophyll de-epoxidation in P. damicornis symbionts was greater in sun-adapted than shade-adapted surfaces, correlating with non-photochemical quenching (NPQRLC). No variation was found in A. valida, indicating that resident symbiont communities may not have been physiologically compromised, perhaps as a result of changes in the composition of the Symbiodinium community consortia. © Inter-Research 2008
Subtropical zooplankton assemblage promotes the harmful cyanobacterium Cylindrospermopsis raciborskii in a mesocosm experiment
© The Author 2014. Harmful algal blooms (HABs) with public health impacts threaten freshwater ecosystems, including drinking water reservoirs, globally. Subtropical systems are often dominated by filamentous and colonial cyanobacteria, algae that are potentially less accessible for consumption by resident meso-zooplankton grazers. Less understood than selective grazing is the role of zooplankton in regenerating nutrients and facilitating growth of algae with efficient uptake strategies, such as the toxin-producing cyanobacterium, Cylindrospermopsis raciborskii. Using ∼800-L bags suspended in the upper 3 m of the water column, we examined the growth of C. raciborskii under four treatments: 3 × ambient zooplankton biomass, 10 × zooplankton, 10 × zooplankton plus inorganic P addition and a no amendment control (3Z, 10Z, 10ZP, control, respectively). After 4 days, C. raciborskii relative abundance doubled in the 10Z and 10ZP treatments compared with the control and 3Z treatments, and after 7 days P addition resulted in ∼20% higher relative C. raciborskii biomass compared with other treatments, and an order of magnitude increase in N-fixing phytoplankton. The particulate C: P ratio declined in the 10Z and 10ZP mesocosms, indicating that meso-zooplankton facilitated P transfer to algae. Overall, the copepod dominated subtropical meso-zooplankton assemblage promoted C. raciborskii abundance and biomass over the short-term, demonstrating their facilitation of subtropical freshwater HAB formation
- …
