283 research outputs found
Characterisation and expression of SPLUNC2, the human orthologue of rodent parotid secretory protein
We recently described the Palate Lung Nasal Clone (PLUNC) family of proteins as an extended group of proteins expressed in the upper airways, nose and mouth. Little is known about these proteins, but they are secreted into the airway and nasal lining fluids and saliva where, due to their structural similarity with lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein, they may play a role in the innate immune defence. We now describe the generation and characterisation of novel affinity-purified antibodies to SPLUNC2, and use them to determine the expression of this, the major salivary gland PLUNC. Western blotting showed that the antibodies identified a number of distinct protein bands in saliva, whilst immunohistochemical analysis demonstrated protein expression in serous cells of the major salivary glands and in the ductal lumens as well as in cells of minor mucosal glands. Antibodies directed against distinct epitopes of the protein yielded different staining patterns in both minor and major salivary glands. Using RT-PCR of tissues from the oral cavity, coupled with EST analysis, we showed that the gene undergoes alternative splicing using two 5' non-coding exons, suggesting that the gene is regulated by alternative promoters. Comprehensive RACE analysis using salivary gland RNA as template failed to identify any additional exons. Analysis of saliva showed that SPLUNC2 is subject to N-glycosylation. Thus, our study shows that multiple SPLUNC2 isoforms are found in the oral cavity and suggest that these proteins may be differentially regulated in distinct tissues where they may function in the innate immune response
Regulation of microRNA biogenesis and turnover by animals and their viruses
Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes
Outdoor, Indoor, and Personal Exposure to VOCs in Children
We measured volatile organic compound (VOC) exposures in multiple locations for a diverse population of children who attended two inner-city schools in Minneapolis, Minnesota. Fifteen common VOCs were measured at four locations: outdoors (O), indoors at school (S), indoors at home (H), and in personal samples (P). Concentrations of most VOCs followed the general pattern O ≈ S < P ≤ H across the measured microenvironments. The S and O environments had the smallest and H the largest influence on personal exposure to most compounds. A time-weighted model of P exposure using all measured microenvironments and time–activity data provided little additional explanatory power beyond that provided by using the H measurement alone. Although H and P concentrations of most VOCs measured in this study were similar to or lower than levels measured in recent personal monitoring studies of adults and children in the United States, p-dichlorobenzene was the notable exception to this pattern, with upper-bound exposures more than 100 times greater than those found in other studies of children. Median and upper-bound H and P exposures were well above health benchmarks for several compounds, so outdoor measurements likely underestimate long-term health risks from children’s exposure to these compounds
Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants
BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust
Resolving the fibrotic niche of human liver cirrhosis at single-cell level.
Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.Includes Wellcome, BHF, MRC, BBSRC and NIHR
Effects of lower limb amputation on the mental rotation of feet
What happens to the mental representation of our body when the actual anatomy of our body changes? We asked 18 able-bodied controls, 18 patients with a lower limb amputation and a patient with rotationplasty to perform a laterality judgment task. They were shown illustrations of feet in different orientations which they had to classify as left or right limb. This laterality recognition task, originally introduced by Parsons in Cognit Psychol 19:178–241, (1987), is known to elicit implicit mental rotation of the subject’s own body part. However, it can also be solved by mental transformation of the visual stimuli. Despite the anatomical changes in the body periphery of the amputees and of the rotationplasty patient, no differences in their ability to identify illustrations of their affected versus contralateral limb were found, while the group of able-bodied controls showed clear laterality effects. These findings are discussed in the context of various strategies for mental rotation versus the maintenance of an intact prototypical body structural description
A Reverse Transcriptase-PCR Assay for Detecting Filarial Infective Larvae in Mosquitoes
The Global Programme for the Elimination of Lymphatic Filariasis (GPELF) was launched in the year 1998 with the goal of eliminating lymphatic filariasis by 2020. As the success of mass drug administration (MDA) in the global program drives the rates of infection in endemic populations to very low levels, the development of new, highly sensitive methods are required for monitoring transmission by screening mosquitoes for the presence of L3 infective larvae. The current method of mosquito dissection to identify L3 larvae is laborious and insensitive and is not amenable to screening large numbers of mosquitoes. Existing molecular assays for the detection of filarial parasite DNA in mosquitoes are sensitive and can easily screen large numbers of vectors. However, current PCR-based methods cannot distinguish between infected mosquitoes that contain any stage of the parasite and infective mosquitoes that harbor third stage larvae (L3) capable of establishing new infections in humans. This paper reports the first development of a molecular L3-detection assay for a filarial parasite in mosquitoes based on RT-PCR detection of an L3-activated gene transcript. This strategy of detecting stage-specific messenger RNA from filarial parasites may also prove useful for detecting infective stages of other vector-borne pathogens
A Four-Antigen Mixture for Rapid Assessment of Onchocerca volvulus Infection
Caused by the filarial parasite Onchocerca volvulus, onchocerciasis is a neglected tropical disease associated with blindness and severe dermatitis. Available diagnostic methods are either invasive, require hours or days to perform, and/or need sophisticated equipment to be conducted. Thus, there is an urgent need for simple and rapid technologies for the specific diagnosis of Onchocerca volvulus infection. Here we investigated whether luciferase immunoprecipitation systems (LIPS) can produce a more rapid and specific test for diagnosis of O. volvulus infection. Using modified versions of previously identified Onchocerca-specific antigens, LIPS tests detected antibodies to all four O. volvulus antigens and easily distinguished the O. volvulus-infected samples from uninfected samples. We also tested these four different antigens in a simpler format as a combined mixture and distinguished 100% of the confirmed cases from the uninfected controls. A rapid 15-minute version of this mixture test (QLIPS) also allowed distinction of 100% of the cases from those uninfected and performed even better in identifying Onchocerca from other cross-reactive parasitic infections. This study suggests that this rapid LIPS test (QLIPS) has the potential to be used in point-of-care detection of onchocerciasis and thereby may provide a new tool for diagnosis and the monitoring of transmission control measures
Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide
BACKGROUND: Doxorubicin and cyclophosphamide (AC) therapy is an effective treatment for early-stage breast cancer. Doxorubicin is a substrate for ABCB1 and SLC22A16 transporters. Cyclophosphamide is a prodrug that requires oxidation to 4-hydroxy-cyclophosphamide, which yields a cytotoxic alkylating agent. The initial oxidation is catalysed by cytochrome P450 enzymes including CYP2B6, CYP2C9, CYP2C19 and CYP3A5. Polymorphic variants of the genes coding for these enzymes and transporters have been identified, which may influence the systemic pharmacology of the two drugs. It is not known whether this genetic variation has an impact on the efficacy or toxicity of AC therapy. METHODS: Germ line DNA samples from 230 patients with breast cancer on AC therapy were genotyped for the following SNPs: ABCB1 C1236T, G2677T/A and C3435T, SLC22A16 A146G, T312C, T755C and T1226C, CYP2B6*2, *8, *9, *3, *4 and *5, CYP2C9*2 and *3, CYP3A5*3 and CYP2C19*2. Clinical data on survival, toxicity, demographics and pathology were collated. RESULTS: A lower incidence of dose delay, indicative of less toxicity, was seen in carriers of the SLC22A16 A146G, T312C, T755C variants. In contrast, a higher incidence of dose delay was seen in carriers of the SLC22A16 1226C, CYP2B6*2 and CYP2B6*5 alleles. The ABCB1 2677A, CYP2B6*2, CYP 2B6*8, CYP 2B6*9, CYP 2B6*4 alleles were associated with a worse outcome. CONCLUSION: Variant alleles in the ABCB1, SLC22A16 and CYP2B6 genes are associated with response to AC therapy in the treatment of breast cancer
Socioeconomic Status Is Not Related with Facial Fluctuating Asymmetry: Evidence from Latin-American Populations
The expression of facial asymmetries has been recurrently related with poverty and/or disadvantaged socioeconomic status. Departing from the developmental instability theory, previous approaches attempted to test the statistical relationship between the stress experienced by individuals grown in poor conditions and an increase in facial and corporal asymmetry. Here we aim to further evaluate such hypothesis on a large sample of admixed Latin Americans individuals by exploring if low socioeconomic status individuals tend to exhibit greater facial fluctuating asymmetry values. To do so, we implement Procrustes analysis of variance and Hierarchical Linear Modelling (HLM) to estimate potential associations between facial fluctuating asymmetry values and socioeconomic status. We report significant relationships between facial fluctuating asymmetry values and age, sex, and genetic ancestry, while socioeconomic status failed to exhibit any strong statistical relationship with facial asymmetry. These results are persistent after the effect of heterozygosity (a proxy for genetic ancestry) is controlled in the model. Our results indicate that, at least on the studied sample, there is no relationship between socioeconomic stress (as intended as low socioeconomic status) and facial asymmetries
- …
