2,038 research outputs found

    Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity

    Full text link
    Given an nn-length input signal \mbf{x}, it is well known that its Discrete Fourier Transform (DFT), \mbf{X}, can be computed in O(nlogn)O(n \log n) complexity using a Fast Fourier Transform (FFT). If the spectrum \mbf{X} is exactly kk-sparse (where k<<nk<<n), can we do better? We show that asymptotically in kk and nn, when kk is sub-linear in nn (precisely, knδk \propto n^{\delta} where 0<δ<10 < \delta <1), and the support of the non-zero DFT coefficients is uniformly random, we can exploit this sparsity in two fundamental ways (i) {\bf {sample complexity}}: we need only M=rkM=rk deterministically chosen samples of the input signal \mbf{x} (where r<4r < 4 when 0<δ<0.990 < \delta < 0.99); and (ii) {\bf {computational complexity}}: we can reliably compute the DFT \mbf{X} using O(klogk)O(k \log k) operations, where the constants in the big Oh are small and are related to the constants involved in computing a small number of DFTs of length approximately equal to the sparsity parameter kk. Our algorithm succeeds with high probability, with the probability of failure vanishing to zero asymptotically in the number of samples acquired, MM.Comment: 36 pages, 15 figures. To be presented at ISIT-2013, Istanbul Turke

    Exact Regeneration Codes for Distributed Storage Repair Using Interference Alignment

    Full text link
    The high repair cost of (n,k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. On one end of this spectrum of Regenerating Codes are Minimum Storage Regenerating (MSR) codes that can match the minimum storage cost of MDS codes while also significantly reducing repair bandwidth. In this paper, we describe Exact-MSR codes which allow for any failed nodes (whether they are systematic or parity nodes) to be regenerated exactly rather than only functionally or information-equivalently. We show that Exact-MSR codes come with no loss of optimality with respect to random-network-coding based MSR codes (matching the cutset-based lower bound on repair bandwidth) for the cases of: (a) k/n <= 1/2; and (b) k <= 3. Our constructive approach is based on interference alignment techniques, and, unlike the previous class of random-network-coding based approaches, we provide explicit and deterministic coding schemes that require a finite-field size of at most 2(n-k).Comment: to be submitted to IEEE Transactions on Information Theor

    Secure Source Coding with a Helper

    Full text link
    We consider a secure source coding problem with a rate-limited helper. In particular, Alice observes an independent and identically distributed (i.i.d.) source X and wishes to transmit this source losslessly to Bob over a rate-limited link. A helper (Helen), observes an i.i.d. correlated source Y and can transmit information to Bob over a separate rate-limited link. A passive eavesdropper (Eve) can observe the coded output of Alice, i.e., the link from Alice to Bob is public. The uncertainty about the source X at Eve, is measured by the conditional entropy of the source given the coded output of Alice. We completely characterize the rate-equivocation region for this secure source coding model, where we show that Slepian-Wolf binning of X with respect to the coded side information received at Bob is optimal. We next consider a modification of this model in which Alice also has access to the coded output of Helen. For the two-sided helper model, we characterize the rate-equivocation region. While the availability of side information at Alice does not reduce the rate of transmission from Alice, it significantly enhances the resulting equivocation at Eve. In particular, the resulting equivocation for the two-sided helper case is shown to be min(H(X),R_y), i.e., one bit from the two-sided helper provides one bit of uncertainty at Eve. From this result, we infer that Slepian-Wolf binning of X is suboptimal and one can further decrease the information leakage to the eavesdropper by utilizing the side information at Alice. We finally generalize these results to the case in which there is additional un-coded side information W available at Bob and characterize the rate-equivocation regions under the assumption that Y-X-W forms a Markov chain.Comment: IEEE Transactions on Information Theory, to appea

    Semi-Definite Programming Relaxation for Non-Line-of-Sight Localization

    Full text link
    We consider the problem of estimating the locations of a set of points in a k-dimensional euclidean space given a subset of the pairwise distance measurements between the points. We focus on the case when some fraction of these measurements can be arbitrarily corrupted by large additive noise. Given that the problem is highly non-convex, we propose a simple semidefinite programming relaxation that can be efficiently solved using standard algorithms. We define a notion of non-contractibility and show that the relaxation gives the exact point locations when the underlying graph is non-contractible. The performance of the algorithm is evaluated on an experimental data set obtained from a network of 44 nodes in an indoor environment and is shown to be robust to non-line-of-sight errors

    The MDS Queue: Analysing the Latency Performance of Erasure Codes

    Full text link
    In order to scale economically, data centers are increasingly evolving their data storage methods from the use of simple data replication to the use of more powerful erasure codes, which provide the same level of reliability as replication but at a significantly lower storage cost. In particular, it is well known that Maximum-Distance-Separable (MDS) codes, such as Reed-Solomon codes, provide the maximum storage efficiency. While the use of codes for providing improved reliability in archival storage systems, where the data is less frequently accessed (or so-called "cold data"), is well understood, the role of codes in the storage of more frequently accessed and active "hot data", where latency is the key metric, is less clear. In this paper, we study data storage systems based on MDS codes through the lens of queueing theory, and term this the "MDS queue." We analytically characterize the (average) latency performance of MDS queues, for which we present insightful scheduling policies that form upper and lower bounds to performance, and are observed to be quite tight. Extensive simulations are also provided and used to validate our theoretical analysis. We also employ the framework of the MDS queue to analyse different methods of performing so-called degraded reads (reading of partial data) in distributed data storage

    On Secure Distributed Data Storage Under Repair Dynamics

    Full text link
    We address the problem of securing distributed storage systems against passive eavesdroppers that can observe a limited number of storage nodes. An important aspect of these systems is node failures over time, which demand a repair mechanism aimed at maintaining a targeted high level of system reliability. If an eavesdropper observes a node that is added to the system to replace a failed node, it will have access to all the data downloaded during repair, which can potentially compromise the entire information in the system. We are interested in determining the secrecy capacity of distributed storage systems under repair dynamics, i.e., the maximum amount of data that can be securely stored and made available to a legitimate user without revealing any information to any eavesdropper. We derive a general upper bound on the secrecy capacity and show that this bound is tight for the bandwidth-limited regime which is of importance in scenarios such as peer-to-peer distributed storage systems. We also provide a simple explicit code construction that achieves the capacity for this regime.Comment: 5 pages, 4 figures, to appear in Proceedings of IEEE ISIT 201
    corecore