2,389 research outputs found
The effect of the lateral interactions on the critical behavior of long straight rigid rods on two-dimensional lattices
Using Monte Carlo simulations and finite-size scaling analysis, the critical
behavior of attractive rigid rods of length k (k-mers) on square lattices at
intermediate density has been studied. A nematic phase, characterized by a big
domain of parallel k-mers, was found. This ordered phase is separated from the
isotropic state by a continuous transition occurring at a intermediate density
\theta_c, which increases linearly with the magnitude of the lateral
interactions.Comment: 7 pages, 6 figure
Comment on: "Effect of polydispersity on the ordering transition of adsorbed self-assembled rigid rods"
The critical behavior of self-assembled rigid rods on a square lattice was
recently reinvestigated by Almarza et al. [Phys. Rev. E 82, 061117 (2010)].
Based on the Binder cumulants and the value of the critical exponent of the
correlation length, the authors found that the isotropic-nematic phase
transition occurring in the system is in the two-dimensional Ising universality
class. This conclusion contrasts with that of a previous study [L\'opez et al.,
Phys. Rev. E 80, 040105 (R) (2009)] which indicates that the transition at
intermediate density belongs to the q = 1 Potts universality class. Almarza et
al. attributed the discrepancy to the use of the density as the control
parameter by L\'opez et al. The present work shows that this suggestion is not
sufficient, and that the discrepancy arises solely from the use of different
statistical ensembles. Finally, the necessity of making corrections to the
scaling functions in the canonical ensemble is discussed.Comment: 3 pages, 2 figures, accepted for publication in Physical Review
Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices
Monte Carlo (MC) simulations have been carried out to study the adsorption on
square and triangular lattices of particles with two bonding sites that, by
decreasing temperature or increasing density, polymerize reversibly into chains
with a discrete number of allowed directions and, at the same time, undergo a
continuous isotropic-nematic (IN) transition. The process has been monitored by
following the behavior of the adsorption isotherms for different values of
lateral interaction energy/temperature. The numerical data were compared with
mean-field analytical predictions and exact functions for noninteracting and 1D
systems. The obtained results revealed the existence of three adsorption
regimes in temperature. (1) At high temperatures, above the critical one
characterizing the IN transition at full coverage Tc(\theta=1), the particles
are distributed at random on the surface and the adlayer behaves as a
noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers
adsorb forming chains over almost the entire range of coverage, and the
adsorption process behaves as a 1D problem. (3) In the intermediate regime, the
system exhibits a mixed regime and the filling of the lattice proceeds
according to two different processes. In the first stage, the monomers adsorb
isotropically on the lattice until the IN transition occurs in the system and,
from this point, particles adsorb forming chains so that the adlayer behaves as
a 1D fluid. The two adsorption processes are present in the adsorption
isotherms, and a marked singularity can be observed that separates both
regimes. Thus, the adsorption isotherms appear as sensitive quantities with
respect to the IN phase transition, allowing us (i) to reproduce the phase
diagram of the system for square lattices and (ii) to obtain an accurate
determination of the phase diagram for triangular lattices.Comment: Langmuir, 201
Critical behavior of self-assembled rigid rods on triangular and honeycomb lattices
Using Monte Carlo simulations and finite-size scaling analysis, the critical
behavior of self-assembled rigid rods on triangular and honeycomb lattices at
intermediate density has been studied. The system is composed of monomers with
two attractive (sticky) poles that, by decreasing temperature or increasing
density, polymerize reversibly into chains with three allowed directions and,
at the same time, undergo a continuous isotropic-nematic (IN) transition. The
determination of the critical exponents, along with the behavior of Binder
cumulants, indicate that the IN transition belongs to the q=1 Potts
universality class.Comment: 6 pages, 5 figure
Adsorption preference reversal phenomenon from multisite-occupancy theory fortwo-dimensional lattices
The statistical thermodynamics of polyatomic species mixtures adsorbed on
two-dimensional substrates was developed on a generalization in the spirit of
the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In
this scheme, the coverage and temperature dependence of the Helmholtz free
energy and chemical potential are given. The formalism leads to the exact
statistical thermodynamics of binary mixtures adsorbed in one dimension,
provides a close approximation for two-dimensional systems accounting multisite
occupancy and allows to discuss the dimensionality and lattice structure
effects on the known phenomenon of adsorption preference reversal.Comment: 13 pages, 4 figure
- …
