193 research outputs found
Ranking factors involved in diabetes remission after bariatric surgery using machine-learning integrating clinical and genomic biomarkers
AbstractAs weight-loss surgery is an effective treatment for the glycaemic control of type 2 diabetes in obese patients, yet not all patients benefit, it is valuable to find predictive factors for this diabetic remission. This will help elucidating possible mechanistic insights and form the basis for prioritising obese patients with dysregulated diabetes for surgery where diabetes remission is of interest. In this study, we combine both clinical and genomic factors using heuristic methods, informed by prior biological knowledge in order to rank factors that would have a role in predicting diabetes remission, and indeed in identifying patients who may have low likelihood in responding to bariatric surgery for improved glycaemic control. Genetic variants from the Illumina CardioMetaboChip were prioritised through single-association tests and then seeded a larger selection from protein–protein interaction networks. Artificial neural networks allowing nonlinear correlations were trained to discriminate patients with and without surgery-induced diabetes remission, and the importance of each clinical and genetic parameter was evaluated. The approach highlighted insulin treatment, baseline HbA1c levels, use of insulin-sensitising agents and baseline serum insulin levels, as the most informative variables with a decent internal validation performance (74% accuracy, area under the curve (AUC) 0.81). Adding information for the eight top-ranked single nucleotide polymorphisms (SNPs) significantly boosted classification performance to 84% accuracy (AUC 0.92). The eight SNPs mapped to eight genes — ABCA1, ARHGEF12, CTNNBL1, GLI3, PROK2, RYBP, SMUG1 and STXBP5 — three of which are known to have a role in insulin secretion, insulin sensitivity or obesity, but have not been indicated for diabetes remission after bariatric surgery before.</jats:p
Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis
BACKGROUND: In recent years, studies on the human intestinal microbiota have attracted tremendous attention. Application of next generation sequencing for mapping of bacterial phylogeny and function has opened new doors to this field of research. However, little attention has been given to the effects of choice of methodology on the output resulting from such studies. RESULTS: In this study we conducted a systematic comparison of the DNA extraction methods used by the two major collaborative efforts: The European MetaHIT and the American Human Microbiome Project (HMP). Additionally, effects of homogenizing the samples before extraction were addressed. We observed significant differences in distribution of bacterial taxa depending on the method. While eukaryotic DNA was most efficiently extracted by the MetaHIT protocol, DNA from bacteria within the Bacteroidetes phylum was most efficiently extracted by the HMP protocol. CONCLUSIONS: Whereas it is comforting that the inter-individual variation clearly exceeded the variation resulting from choice of extraction method, our data highlight the challenge of comparing data across studies applying different methodologies
Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses
Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children
Applications of AI in Predicting Drug Responses for Type 2 Diabetes
Type 2 diabetes mellitus has seen a continuous rise in prevalence in recent years, and a similar trend has been observed in the increased availability of glucose-lowering drugs. There is a need to understand the variation in treatment response to these drugs to be able to predict people who will respond well or poorly to a drug. Electronic health records, clinical trials, and observational studies provide a huge amount of data to explore predictors of drug response. The use of artificial intelligence (AI), which includes machine learning and deep learning techniques, has the capacity to improve the prediction of treatment response in patients. AI can assist in the analysis of vast datasets to identify patterns and may provide valuable information on selecting an effective drug. Predicting an individual’s response to a drug can aid in treatment selection, optimizing therapy, exploring new therapeutic options, and personalized medicine. This viewpoint highlights the growing evidence supporting the potential of AI-based methods to predict drug response with accuracy. Furthermore, the methods highlight a trend toward using ensemble methods as preferred models in drug response prediction studies.</p
Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling
BACKGROUND: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). RESULTS: We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. CONCLUSIONS: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1405-8) contains supplementary material, which is available to authorized users
Genomic profiling of thousands of candidate polymorphisms predicts risk of relapse in 778 Danish and German childhood acute lymphoblastic leukemia patients
Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer
Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all TamRs using both sequencing and LNA-based quantitative PCR technologies. Although the target genes affected by the altered miRNA in the three TamRs differed, good agreement in terms of affected molecular pathways was observed. Moreover, we found evidence of miRNA-mediated regulation of ESR1, PGR1, FOXM1 and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors and siRNA-mediated gene knockdown, we showed that both SNAI2 and FYN significantly affect the growth of TamR cell lines. Finally, we show that a combination of 2 miRNAs (miR-190b and miR-516a-5p) exhibiting altered expression in TamR cell lines were predictive of treatment outcome in a cohort of ER+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer
Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer.
Testicular germ cell cancer (TGCC) is one of the most heritable forms of cancer. Previous genome-wide association studies have focused on single nucleotide polymorphisms (SNPs), largely ignoring the influence of copy number variants (CNVs). Here we present a genome-wide study of copy number variation on a cohort of 212 cases and 437 controls from Denmark, which was genotyped at ~1.8 million markers, half of which were non-polymorphic copy number markers. No association of common variants were found, whereas analysis of rare variants (present in less than 1% of the samples) initially indicated a single gene with significantly higher accumulation of rare CNVs in cases as compared to controls, at the gene PTPN1 (P=3.8*10-2, 0.9% of cases and 0% of controls). However, the CNV could not be verified by qPCR in the affected samples. The CNV calling of the array data was validated by sequencing of the GSTM1 gene, which showed that the CNV frequency was in complete agreement between the two platforms. This study therefore disconfirms the hypothesis that there exists a single CNV locus with a major effect size that predisposes to TGCC. Genome-wide pathway association analysis indicated a weak association of rare CNVs related to cell migration (FDR=0.021, 1.8% of cases and 1.1% of controls). Dysregulation during migration of primordial germ cells has previously been suspected to be a part of TGCC development and this set of multiple rare variants may thereby have a minor contribution to an increased susceptibility of TGCCs
- …
