4,851 research outputs found
CD26/DPPIV and response to hepatitis B vaccination
The prevention of hepatitis B is important, since it is responsible for significant morbidity and mortality around the world. Unfortunately, hepatitis B vaccine does not always induce protective immunity. The lack of immune response to vaccine (non-responders) can depend on individual characteristics. The objective of this study was to correlate the CD26/DPPIV cellular expression and DPPIV serum activity with HBV vaccine response and its possible role as an indicator of immune competence acquisition. We also determined the cellular expression of CD3, CD19, CD56 and CD25 in peripheral blood T lymphocytes. Blood samples were obtained from 28 healthy human volunteers who were enrolled with a vaccination program. There were "responders" (RM = 13) and "non-responders" (NRM = 15), after vaccination. The lymphocyte populations were identified by flow cytometry. DPPIV serum activity was measured fluorimetrically. CD26 expression in responders (55.9 +/- 7.7%) versus in non-responders (51.9 +/- 7.0%) did not show a significant difference. The DPPIV serum activity in responders compared to in non-responder subgroup (59.9 +/- 8.4/50.3 +/- 10.6U/L) showed, however, a significant difference (P < 0.05). The expression of CD3, CD19 and CD56 on peripheral lymphocytes was similar between responders and non-responders. The expression of CD3CD26 (52.2 +/- 8.6%) and CD3CD25 (10.9 +/- 3.8%) in responders versus the expression of CD3CD26 (48.0 +/- 5.7%) and CD3CD25 (8 +/- 4.6%) in non-responders did not show statistically significant difference. CD25 referred as a marker of T lymphocyte activation was increased in responders (15.8 +/- 4.5%) versus in non-responders (10.1 +/- 4.8%), showing a significant difference (P = 0.003). It was, however, impossible to demonstrate an increase in CD3CD25 and CD3CD26 in the responder subgroup. This suggests that different lymphocyte subsets other than T cells are implicated in the response to hepatitis B vaccination
Gauge symmetry and W-algebra in higher derivative systems
The problem of gauge symmetry in higher derivative Lagrangian systems is
discussed from a Hamiltonian point of view. The number of independent gauge
parameters is shown to be in general {\it{less}} than the number of independent
primary first class constraints, thereby distinguishing it from conventional
first order systems. Different models have been considered as illustrative
examples. In particular we show a direct connection between the gauge symmetry
and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded
version with new results, to appear in JHE
Quality of life and the risk of contracting malaria by multivariate analysis in the Brazilian Amazon region
BACKGROUND: The incidence of malaria in the Amazon basin is closely related to social inequalities, given that precarious economic and socio-environmental conditions represent favourable factors for the transmission of the disease in tropical regions, such as the Brazilian state of Pará. In the present study, an association was found between the variation in a quality of life index (QLI), based on the socioeconomic differences between the municipalities of this state, and the risk of contracting malaria, based on the Annual Parasitic Index (API), with the primary objective of providing guidelines for the development of effective strategies for the control of the disease. METHODS: The API scores for the years between 2003 and 2011 were collected from the Brazilian Ministry of Health’s DATASUS database, and socioeconomic data for the 143 municipalities of Pará were obtained from the 2010 census. The data were analysed using multivariate factorial and correspondence techniques. RESULTS: The QLI was calculated for each municipality, of which, 69.23% were classified as having a poor or regular quality of life. The municipalities with poor QLI scores also presented moderate to high rates of malaria, with probabilities of 80.97% and 95.13%, respectively, while those with good QLI scores had low rates of malaria, with a probability of 79.24%. The results indicated a concentration of malaria in the south-west of the state of Pará, with an increase of 8.82% in the incidence of the disease over the study period, and the northeastern and Marajó mesoregions, where there was an increase of over 90%. In south-eastern Pará, by contrast, there was a marked reduction (78%) in the incidence of the disease, reflecting the heterogeneous distribution of malaria among the different municipalities and mesoregions of the state, especially those with moderate to high risk of transmission. CONCLUSIONS: These findings confirm that malaria is endemic to Pará and is typical of the state’s poorest areas, and that the distribution of the disease within the state indicates an intimate relationship with the living conditions of the population, affecting primarily the economically less privileged sectors of the society
DevOps for network function virtualisation: an architectural approach
The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of different service providers, and introduces a specialised Development and Operations model for supporting developers
Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor
Miniaturization of force probes into nanomechanical oscillators enables
ultrasensitive investigations of forces on dimensions smaller than their
characteristic length scale. Meanwhile it also unravels the force field
vectorial character and how its topology impacts the measurement. Here we
expose an ultrasensitive method to image 2D vectorial force fields by
optomechanically following the bidimensional Brownian motion of a singly
clamped nanowire. This novel approach relies on angular and spectral tomography
of its quasi frequency-degenerated transverse mechanical polarizations:
immersing the nanoresonator in a vectorial force field does not only shift its
eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This
universal method is employed to map a tunable electrostatic force field whose
spatial gradients can even take precedence over the intrinsic nanowire
properties. Enabling vectorial force fields imaging with demonstrated
sensitivities of attonewton variations over the nanoprobe Brownian trajectory
will have strong impact on scientific exploration at the nanoscale
Universal features of correlated bursty behaviour
Inhomogeneous temporal processes, like those appearing in human
communications, neuron spike trains, and seismic signals, consist of
high-activity bursty intervals alternating with long low-activity periods. In
recent studies such bursty behavior has been characterized by a fat-tailed
inter-event time distribution, while temporal correlations were measured by the
autocorrelation function. However, these characteristic functions are not
capable to fully characterize temporally correlated heterogenous behavior. Here
we show that the distribution of the number of events in a bursty period serves
as a good indicator of the dependencies, leading to the universal observation
of power-law distribution in a broad class of phenomena. We find that the
correlations in these quite different systems can be commonly interpreted by
memory effects and described by a simple phenomenological model, which displays
temporal behavior qualitatively similar to that in real systems
Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas
Neglected tropical diseases (NTDs) have\ud
been recently identified as significant public\ud
health problems in Texas and elsewhere in\ud
the American South. A one-day forum on the\ud
landscape of research and development and\ud
the hidden burden of NTDs in Texas\ud
explored the next steps to coordinate advocacy,\ud
public health, and research into a\ud
cogent health policy framework for the\ud
American NTDs. It also highlighted how\ud
U.S.-funded global health research can serve\ud
to combat these health disparities in the\ud
United States, in addition to benefiting\ud
communities abroad
Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.
Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention
Prevalence and associated risk factors of malaria among adults in East Shewa Zone of Oromia Regional State, Ethiopia: a cross-sectional study
BACKGROUND: Malaria is one of the most important causes of morbidity and mortality in sub-Saharan Africa. The disease is prevalent in over 75% of the country's area making it the leading public health problems in the country. Information on the prevalence of malaria and its associated factors is vital to focus and improve malaria interventions.
METHODS: A cross-sectional study was carried out from October to November 2012 in East Shewa zone of Oromia Regional State, Ethiopia. Adults aged 16 or more years with suspected malaria attending five health centers were eligible for the study. Logistic regression models were used to examine the effect of each independent variable on risk of subsequent diagnosis of malaria.
RESULTS: Of 810 suspected adult malaria patients who participated in the study, 204 (25%) had microscopically confirmed malaria parasites. The dominant Plasmodium species were P. vivax (54%) and P. falciparum (45%), with mixed infection of both species in one patient. A positive microscopic result was significantly associated with being in the age group of 16 to 24 years [Adjusted Odds Ratio aOR 6.7; 95% CI: 2.3 to 19.5], 25 to 34 years [aOR 4.2; 95% CI: 1.4 to 12.4], and 35 to 44 years [aOR 3.7; 95% CI: 1.2-11.4] compared to 45 years or older; being treated at Meki health center [aOR 4.1; 95% CI: 2.4 to 7.1], being in Shashemene health center [aOR = 2.3; 95% CI: 1.5 to 4.5], and living in a rural area compared to an urban area [aOR 1.7; 95% CI: 1.1 to 2.6)].
CONCLUSION: Malaria is an important public health problem among adults in the study area with a predominance of P. vivax and P. falciparum infection. Thus, appropriate health interventions should be implemented to prevent and control the disease
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
- …
