11,749 research outputs found
Fixture for plating stripped conductors of flat conductor cables /FCC/
Fixture supports flat conductor cables /FCC/ while providing electrical contact to stripped ends of cable during electroplating process. Cable is held in the form of a coil
High resolution study of the solar atmosphere Final report
High resolution study of solar atmosphere of H alpha lin
Tools made of ice facilitate forming of soft, sticky materials
Tools made of ice facilitate the forming or shaping of materials that are soft and sticky in the uncured state. The low-temperature of the ice slows the curing of the material, extending the working time available before setup. Handling problems are eliminated because the material does not adhere to the tool, and the melting ice serves as a lubricant
A quantification of hydrodynamical effects on protoplanetary dust growth
Context. The growth process of dust particles in protoplanetary disks can be
modeled via numerical dust coagulation codes. In this approach, physical
effects that dominate the dust growth process often must be implemented in a
parameterized form. Due to a lack of these parameterizations, existing studies
of dust coagulation have ignored the effects a hydrodynamical gas flow can have
on grain growth, even though it is often argued that the flow could
significantly contribute either positively or negatively to the growth process.
Aims. We intend to provide a quantification of hydrodynamical effects on the
growth of dust particles, such that these effects can be parameterized and
implemented in a dust coagulation code.
Methods. We numerically integrate the trajectories of small dust particles in
the flow of disk gas around a proto-planetesimal, sampling a large parameter
space in proto-planetesimal radii, headwind velocities, and dust stopping
times.
Results. The gas flow deflects most particles away from the
proto-planetesimal, such that its effective collisional cross section, and
therefore the mass accretion rate, is reduced. The gas flow however also
reduces the impact velocity of small dust particles onto a proto-planetesimal.
This can be beneficial for its growth, since large impact velocities are known
to lead to erosion. We also demonstrate why such a gas flow does not return
collisional debris to the surface of a proto-planetesimal.
Conclusions. We predict that a laminar hydrodynamical flow around a
proto-planetesimal will have a significant effect on its growth. However, we
cannot easily predict which result, the reduction of the impact velocity or the
sweep-up cross section, will be more important. Therefore, we provide
parameterizations ready for implementation into a dust coagulation code.Comment: 9 pages, 6 figures; accepted for publication in A&A; v2 matches the
manuscript sent to the publisher (very minor changes
Experimental Flow Models for SSME Flowfield Characterization
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models
The Ubiquity of Sidon Sets That Are Not
We prove that every infinite, discrete abelian group admits a pair of
sets whose union is not . In particular, this implies that every such
group contains a Sidon set that is not
Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR)
The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes
- …
