963 research outputs found
ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD101584
We study the circumstellar evolution of the binary HD101584, consisting of a
post-AGB star and a low-mass companion, which is most likely a
post-common-envelope-evolution system. We used ALMA observations of the 12CO,
13CO, and C18O J=2-1 lines and the 1.3mm continuum to determine the morphology,
kinematics, masses, and energetics of the circumstellar environment. The
circumstellar medium has a bipolar hour-glass structure, seen almost pole-on,
formed by an energetic jet, about 150 km/s. We conjecture that the
circumstellar morphology is related to an event that took place about 500 year
ago, possibly a capture event where the companion spiraled in towards the AGB
star. However, the kinetic energy of the accelerated gas exceeds the released
orbital energy, and, taking into account the expected energy transfer
efficiency of the process, the observed phenomenon does not match current
common-envelope scenarios. This suggests that another process must augment, or
even dominate, the ejection process. A significant amount of material resides
in an unresolved region, presumably in the equatorial plane of the binary
system.Comment: A&A Letter, accepte
Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae
S-type AGB stars have a C/O ratio which suggests that they are transition
objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such,
their circumstellar compositions of gas and dust are thought to be sensitive to
their precise C/O ratio, and it is therefore of particular interest to examine
their circumstellar properties.
We present new Herschel HIFI and PACS sub-millimetre and far-infrared line
observations of several molecular species towards the S-type AGB star W Aql. We
use these observations, which probe a wide range of gas temperatures, to
constrain the circumstellar properties of W Aql, including mass-loss rate and
molecular abundances. We used radiative transfer codes to model the
circumstellar dust and molecular line emission to determine circumstellar
properties and molecular abundances. We assumed a spherically symmetric
envelope formed by a constant mass-loss rate driven by an accelerating wind.
Our model includes fully integrated H2O line cooling as part of the solution of
the energy balance. We detect circumstellar molecular lines from CO, H2O, SiO,
HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer
calculations result in an estimated mass-loss rate for W Aql of 4.0e-6 Msol
yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in
line with ratios previously derived for S-type AGB stars. We find an H2O
abundance of 1.5e-5, which is intermediate to the abundances expected for M and
C stars, and an ortho/para ratio for H2O that is consistent with formation at
warm temperatures. We find an HCN abundance of 3e-6, and, although no CN lines
are detected using HIFI, we are able to put some constraints on the abundance,
6e-6, and distribution of CN in W Aql's circumstellar envelope using
ground-based data. We find an SiO abundance of 3e-6, and an NH3 abundance of
1.7e-5, confined to a small envelope.Comment: 17 pages, 15 figure
ALMA observations of the vibrationally-excited rotational CO transition towards five AGB stars
We report the serendipitous detection with ALMA of the vibrationally-excited
pure-rotational CO transition towards five asymptotic giant branch
(AGB) stars, Cet, R Aqr, R Scl, W Aql, and Gru. The observed lines
are formed in the poorly-understood region located between the stellar surface
and the region where the wind starts, the so-called warm molecular layer. We
successfully reproduce the observed lines profiles using a simple model. We
constrain the extents, densities, and kinematics of the region where the lines
are produced. R Aqr and R Scl show inverse P-Cygni line profiles which indicate
infall of material onto the stars. The line profiles of Cet and R Scl show
variability. The serendipitous detection towards these five sources shows that
vibrationally-excited rotational lines can be observed towards a large number
of nearby AGB stars using ALMA. This opens a new possibility for the study of
the innermost regions of AGB circumstellar envelopes.Comment: 6 pages, 2 figures, 2 tables, 2016MNRAS.463L..74
The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types
A multi-transition survey of HCN (sub-) millimeter line emission from a large
sample of AGB stars of different chemical type is presented. The data are
analysed and circumstellar HCN abundances are estimated. The sample stars span
a large range of properties such as mass-loss rate and photospheric C/O-ratio.
The analysis of the new data allows for more accurate estimates of the
circumstellar HCN abundances and puts new constraints on chemical models. In
order to constrain the circumstellar HCN abundance distribution a detailed
non-LTE excitation analysis, based on the Monte Carlo method, is performed.
Effects of line overlaps and radiative excitation from dust grains are
included. The median values for the derived abundances of HCN (with respect to
H2) are 3x10-5, 7x10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars
(19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes
of the HCN envelopes are similar to those obtained in the case of SiO for the
same sample of sources and agree well with previous results from
interferometric observations, when these are available. We find that there is a
clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of
the star, in that carbon stars have about two orders of magnitude higher
abundances than M-type AGB stars, on average. The derived HCN abundances of the
S-type AGB stars have a larger spread and typically fall in between those of
the two other types, however, slightly closer to the values for the M-type AGB
stars. For the M-type stars, the estimated abundances are much higher than what
would be expected if HCN is formed in thermal equilibrium. However, the results
are also in contrast to predictions from recent non-LTE chemical models, where
very little difference is expected in the HCN abundances between the various
types of AGB stars.Comment: Accepted for publication in A&
CO and HCN isotopologue ratios in the outflows of AGB stars
Isotopologue line intensity ratios of circumstellar molecules have been
widely used to trace the photospheric elemental isotopic ratios of evolved
stars. However, depending on the molecular species and the physical conditions
of the environment, the circumstellar isotopologue ratio may deviate
considerably from the stellar atmospheric value. In this paper, we aim to
examine how the CO and HCN abundance ratios vary radially due to chemical
reactions in the outflows of AGB stars and the effect of excitation and optical
depth on the resulting line intensity ratios. We find that the circumstellar
12CO/13CO can deviate from its atmospheric value by up to 25-94% and 6-60% for
C- and O-type CSEs, respectively. We show that variations of the intensity of
the ISRF and the gas kinetic temperature can significantly influence the CO
isotopologue ratio in the outer CSEs. On the contrary, the H12CN/H13CN ratio is
stable for all tested mass-loss rates. The RT modeling shows that the
integrated line intensity ratio of CO of different rotational transitions
varies significantly for stars with intermediate mass-loss rates due to
combined chemical and excitation effects. In contrast, the excitation
conditions for the both HCN isotopologues are the same. We demonstrate the
importance of using the isotopologue abundance profiles from chemical models as
inputs to RT models in the interpretation of isotopologue observations.
Previous studies of CO isotopologue ratios are based on multi-transition data
for individual sources and it is difficult to estimate the errors in the
reported values due to assumptions that are not entirely correct according to
this study. If anything, previous studies may have overestimated the
circumstellar 12CO/13CO abundance ratio. The use of the HCN as a tracer of C
isotope ratios is affected by fewer complicating problems, provided one
accounts corrections for high optical depths.Comment: 14 pages, 11 figure
HD101584: Circumstellar characteristics and evolutionary status
We have performed a study of the characteristics of the circumstellar
environment of the binary object HD101584, that provides information on a
likely evolutionary scenario. We have obtained and analysed ALMA observations,
complemented with observations using APEX, of a large number of molecular
lines. An analysis of the spectral energy distribution has also been performed.
Emissions from 12 molecular species (not counting isotopologues) have been
observed, and most of them mapped with angular resolutions in the range 0.1" to
0.6". Four circumstellar components are identified: i) a central compact source
of size 0.15", ii) an expanding equatorial density enhancement (a flattened
density distribution in the plane of the orbit) of size 3", iii) a bipolar
high-velocity outflow (150 km/s), and iv) an hourglass structure. The outflow
is directed almost along the line of sight. There is evidence of a second
bipolar outflow. The mass of the circumstellar gas is 0.5[D/1 kpc]^2 Msun,
about half of it lies in the equatorial density enhancement. The dust mass is
0.01[D/1 kpc]^2 Msun, and a substantial fraction of this is in the form of
large-sized, up to 1 mm, grains. The estimated kinetic age of the outflow is
770[D/1 kpc] yr. The kinetic energy and the scalar momentum of the accelerated
gas are estimated to be 7x10^(45)[D/1 kpc]^2 erg and 10^(39)[D/1 kpc]^2 g cm/s,
respectively. We provide good evidence that the binary system HD101584 is in a
post-common-envelope-evolution phase, that ended before a stellar merger.
Isotope ratios combined with stellar mass estimates suggest that the primary
star's evolution was terminated already on the first red giant branch (RGB).
Most of the energy required to drive the outflowing gas was probably released
when material fell towards the companion.Comment: Accepted for publication in A&
The detached dust shells around the carbon AGB stars R Scl and V644 Sco
Detached shells are believed to be created during a thermal pulse, and
constrain the time scales and physical properties of one of the main drivers of
late stellar evolution. We aim at determining the morphology of the detached
dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to
observations of the detached gas shells. We observe the polarised,
dust-scattered stellar light around these stars using the PolCor instrument
mounted on the ESO 3.6m telescope. Observations were done with a coronographic
mask to block out the direct stellar light. The polarised images clearly show
the detached shells. Using a dust radiative transfer code to model the
dust-scattered polarised light, we constrain the radii and widths of the shells
to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and
V644 Sco, respectively. Both shells have an overall spherical symmetry and
widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission
directly with high spatial-resolution maps of CO(3-2) emission from the shell
observed with ALMA. We find that the dust and gas coincide almost exactly,
indicating a common evolution. The data presented here for R Scl are the most
detailed observations of the entire dusty detached shell to date. For V644 Sco
these are the first direct measurements of the detached shell. Also here we
find that the dust most likely coincides with the gas shell. The observations
are consistent with a scenario where the detached shells are created during a
thermal pulse. The determined radii and widths will constrain hydrodynamical
models describing the pre-pulse mass loss, the thermal pulse, and post-pulse
evolution of the star
Unexpectedly large mass loss during the thermal pulse cycle of the red giant R Sculptoris!
The asymptotic giant branch star R Sculptoris is surrounded by a detached
shell of dust and gas. The shell originates from a thermal pulse during which
the star undergoes a brief period of increased mass loss. It has hitherto been
impossible to constrain observationally the timescales and mass-loss properties
during and after a thermal pulse - parameters that determine the lifetime on
the asymptotic giant branch and the amount of elements returned by the star.
Here we report observations of CO emission from the circumstellar envelope and
shell around R Sculptoris with an angular resolution of 1.3 arcsec. What was
hitherto thought to be only a thin, spherical shell with a clumpy structure, is
revealed to contain a spiral structure. Spiral structures associated with
circumstellar envelopes have been seen previously, from which it was concluded
that the systems must be binaries. Using the data, combined with hydrodynamic
simulations, we conclude that R Sculptoris is a binary system that underwent a
thermal pulse approximately 1800 years ago, lasting approximately 200 years.
About 0.003 Msun of mass was ejected at a velocity of 14.3 km s-1 and at a rate
approximately 30 times higher than the prepulse mass-loss rate. This shows that
approximately 3 times more mass is returned to the interstellar medium during
and immediately after a pulse than previously thought.Comment: Accepted by Natur
- …
