963 research outputs found

    ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD101584

    Get PDF
    We study the circumstellar evolution of the binary HD101584, consisting of a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. We used ALMA observations of the 12CO, 13CO, and C18O J=2-1 lines and the 1.3mm continuum to determine the morphology, kinematics, masses, and energetics of the circumstellar environment. The circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic jet, about 150 km/s. We conjecture that the circumstellar morphology is related to an event that took place about 500 year ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy, and, taking into account the expected energy transfer efficiency of the process, the observed phenomenon does not match current common-envelope scenarios. This suggests that another process must augment, or even dominate, the ejection process. A significant amount of material resides in an unresolved region, presumably in the equatorial plane of the binary system.Comment: A&A Letter, accepte

    Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    Get PDF
    S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0e-6 Msol yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5e-5, which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3e-6, and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6e-6, and distribution of CN in W Aql's circumstellar envelope using ground-based data. We find an SiO abundance of 3e-6, and an NH3 abundance of 1.7e-5, confined to a small envelope.Comment: 17 pages, 15 figure

    ALMA observations of the vibrationally-excited rotational CO transition v=1,J=32v=1, J=3-2 towards five AGB stars

    Get PDF
    We report the serendipitous detection with ALMA of the vibrationally-excited pure-rotational CO transition v=1,J=32v=1, J=3-2 towards five asymptotic giant branch (AGB) stars, oo Cet, R Aqr, R Scl, W Aql, and π1\pi^1 Gru. The observed lines are formed in the poorly-understood region located between the stellar surface and the region where the wind starts, the so-called warm molecular layer. We successfully reproduce the observed lines profiles using a simple model. We constrain the extents, densities, and kinematics of the region where the lines are produced. R Aqr and R Scl show inverse P-Cygni line profiles which indicate infall of material onto the stars. The line profiles of oo Cet and R Scl show variability. The serendipitous detection towards these five sources shows that vibrationally-excited rotational lines can be observed towards a large number of nearby AGB stars using ALMA. This opens a new possibility for the study of the innermost regions of AGB circumstellar envelopes.Comment: 6 pages, 2 figures, 2 tables, 2016MNRAS.463L..74

    The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types

    Full text link
    A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of AGB stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. In order to constrain the circumstellar HCN abundance distribution a detailed non-LTE excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. The median values for the derived abundances of HCN (with respect to H2) are 3x10-5, 7x10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars.Comment: Accepted for publication in A&

    CO and HCN isotopologue ratios in the outflows of AGB stars

    Full text link
    Isotopologue line intensity ratios of circumstellar molecules have been widely used to trace the photospheric elemental isotopic ratios of evolved stars. However, depending on the molecular species and the physical conditions of the environment, the circumstellar isotopologue ratio may deviate considerably from the stellar atmospheric value. In this paper, we aim to examine how the CO and HCN abundance ratios vary radially due to chemical reactions in the outflows of AGB stars and the effect of excitation and optical depth on the resulting line intensity ratios. We find that the circumstellar 12CO/13CO can deviate from its atmospheric value by up to 25-94% and 6-60% for C- and O-type CSEs, respectively. We show that variations of the intensity of the ISRF and the gas kinetic temperature can significantly influence the CO isotopologue ratio in the outer CSEs. On the contrary, the H12CN/H13CN ratio is stable for all tested mass-loss rates. The RT modeling shows that the integrated line intensity ratio of CO of different rotational transitions varies significantly for stars with intermediate mass-loss rates due to combined chemical and excitation effects. In contrast, the excitation conditions for the both HCN isotopologues are the same. We demonstrate the importance of using the isotopologue abundance profiles from chemical models as inputs to RT models in the interpretation of isotopologue observations. Previous studies of CO isotopologue ratios are based on multi-transition data for individual sources and it is difficult to estimate the errors in the reported values due to assumptions that are not entirely correct according to this study. If anything, previous studies may have overestimated the circumstellar 12CO/13CO abundance ratio. The use of the HCN as a tracer of C isotope ratios is affected by fewer complicating problems, provided one accounts corrections for high optical depths.Comment: 14 pages, 11 figure

    HD101584: Circumstellar characteristics and evolutionary status

    Full text link
    We have performed a study of the characteristics of the circumstellar environment of the binary object HD101584, that provides information on a likely evolutionary scenario. We have obtained and analysed ALMA observations, complemented with observations using APEX, of a large number of molecular lines. An analysis of the spectral energy distribution has also been performed. Emissions from 12 molecular species (not counting isotopologues) have been observed, and most of them mapped with angular resolutions in the range 0.1" to 0.6". Four circumstellar components are identified: i) a central compact source of size 0.15", ii) an expanding equatorial density enhancement (a flattened density distribution in the plane of the orbit) of size 3", iii) a bipolar high-velocity outflow (150 km/s), and iv) an hourglass structure. The outflow is directed almost along the line of sight. There is evidence of a second bipolar outflow. The mass of the circumstellar gas is 0.5[D/1 kpc]^2 Msun, about half of it lies in the equatorial density enhancement. The dust mass is 0.01[D/1 kpc]^2 Msun, and a substantial fraction of this is in the form of large-sized, up to 1 mm, grains. The estimated kinetic age of the outflow is 770[D/1 kpc] yr. The kinetic energy and the scalar momentum of the accelerated gas are estimated to be 7x10^(45)[D/1 kpc]^2 erg and 10^(39)[D/1 kpc]^2 g cm/s, respectively. We provide good evidence that the binary system HD101584 is in a post-common-envelope-evolution phase, that ended before a stellar merger. Isotope ratios combined with stellar mass estimates suggest that the primary star's evolution was terminated already on the first red giant branch (RGB). Most of the energy required to drive the outflowing gas was probably released when material fell towards the companion.Comment: Accepted for publication in A&

    The detached dust shells around the carbon AGB stars R Scl and V644 Sco

    Get PDF
    Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star

    Unexpectedly large mass loss during the thermal pulse cycle of the red giant R Sculptoris!

    Get PDF
    The asymptotic giant branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star undergoes a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse - parameters that determine the lifetime on the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3 arcsec. What was hitherto thought to be only a thin, spherical shell with a clumpy structure, is revealed to contain a spiral structure. Spiral structures associated with circumstellar envelopes have been seen previously, from which it was concluded that the systems must be binaries. Using the data, combined with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse approximately 1800 years ago, lasting approximately 200 years. About 0.003 Msun of mass was ejected at a velocity of 14.3 km s-1 and at a rate approximately 30 times higher than the prepulse mass-loss rate. This shows that approximately 3 times more mass is returned to the interstellar medium during and immediately after a pulse than previously thought.Comment: Accepted by Natur
    corecore