1,122 research outputs found
Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) vacuum geometries
The canonical quantization of the most general minisuperspace actions --i.e.
with all six scale factor as well as the lapse function and the shift vector
present-- describing the vacuum type II, VI and VII geometries, is considered.
The reduction to the corresponding physical degrees of freedom is achieved
through the usage of the linear constraints as well as the quantum version of
the entire set of classical integrals of motion.Comment: 23 pages, LaTeX2e, No figure
A note on wavemap-tensor cosmologies
We examine theories of gravity which include finitely many coupled scalar
fields with arbitrary couplings to the curvature (wavemaps). We show that the
most general scalar-tensor -model action is conformally equivalent to
general relativity with a minimally coupled wavemap with a particular target
metric. Inflation on the source manifold is then shown to occur in a novel way
due to the combined effect of arbitrary curvature couplings and wavemap
self-interactions. A new interpretation of the conformal equivalence theorem
proved for such `wavemap-tensor' theories through brane-bulk dynamics is also
discussed.Comment: 8 pages, LaTeX, to appear in the Proceedings of the 2nd Hellenic
Cosmology Workshop, National Observatory of Athens, April 21-22, 2001,
(Kluwer 2001
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
Brane-world black holes and the scale of gravity
A particle in four dimensions should behave like a classical black hole if
the horizon radius is larger than the Compton wavelength or, equivalently, if
its degeneracy (measured by entropy in units of the Planck scale) is large. For
spherically symmetric black holes in 4 + d dimensions, both arguments again
lead to a mass threshold MC and degeneracy scale Mdeg of the order of the
fundamental scale of gravity MG. In the brane-world, deviations from the
Schwarzschild metric induced by bulk effects alter the horizon radius and
effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg
might be either larger or smaller than MG. This opens up the possibility that
black holes exist with a mass smaller than MG and might be produced at the LHC
even if M>10 TeV, whereas effects due to bulk graviton exchanges remain
undetectable because suppressed by inverse powers of MG. Conversely, even if
black holes are not found at the LHC, it is still possible that MC>MG and MG
\simeq 1TeV.Comment: 4 pages, no figur
Chiral Generations on Intersecting 5-branes in Heterotic String Theory
We show that there exist two 27 and one 27 bar of E6, net one D=4, N=1 chiral
matter supermultiplet as zero modes localized on the intersection of two
5-branes in the E8 x E8 heterotic string theory. The smeared intersecting
5-brane solution is used via the standard embedding to construct a heterotic
background, which provides, after a compactification of some of the transverse
dimensions, a five-dimensional Randall-Sundrum II like brane-world set-up in
heterotic string theory. As a by-product, we present a new proof of anomaly
cancellation between those from the chiral matter and the anomaly inflow onto
the brane without small instanton.Comment: 26 pages, 5 figures; references added, typo correcte
Top Quarks as a Window to String Resonances
We study the discovery potential of string resonances decaying to
final state at the LHC. We point out that top quark pair production is a
promising and an advantageous channel for studying such resonances, due to
their low Standard Model background and unique kinematics. We study the
invariant mass distribution and angular dependence of the top pair production
cross section via exchanges of string resonances. The mass ratios of these
resonances and the unusual angular distribution may help identify their
fundamental properties and distinguish them from other new physics. We find
that string resonances for a string scale below 4 TeV can be detected via the
channel, either from reconstructing the semi-leptonic
decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Localization of gravity on a de Sitter thick braneworld without scalar fields
In this work we present a simple thick braneworld model that is generated by
an intriguing interplay between a 5D cosmological constant with a de Sitter
metric induced in the 3-brane without the inclusion of scalar fields. We show
that 4D gravity is localized on this brane, provide analytic expressions for
the massive Kaluza-Klein (KK) fluctuation modes and also show that the spectrum
of metric excitations displays a mass gap. We finally present the corrections
to Newton's law due to these massive modes. This model has no naked
singularities along the fifth dimension despite the existence of a mass gap in
the graviton spectrum as it happens in thick branes with 4D Poincare symmetry,
providing a simple model with very good features: the curvature is completely
smooth along the fifth dimension, it localizes 4D gravity and the spectrum of
gravity fluctuations presents a mass gap, a fact that rules out the existence
of phenomenologically dangerous ultralight KK excitations in the model. We
finally present our solution as a limit of scalar thick branes.Comment: 11 pages in latex, no figures, title and abstract changed, a new
section and some references adde
Spread Supersymmetry
In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan
and environmental constraints on the dark matter density may exclude a large
range of \tilde{m} from the reheating temperature after inflation down to
values that yield a LSP mass of order a TeV. After selection effects, the
distribution for \tilde{m} may prefer larger values. A single environmental
constraint from dark matter can then lead to multi-component dark matter,
including both axions and the LSP, giving a TeV-scale LSP lighter than the
corresponding value for single-component LSP dark matter.
If SUSY breaking is mediated to the SM sector at order X^* X, only squarks,
sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino
mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed
by a further loop factor. This Spread SUSY spectrum has two versions; the
Higgsino masses are generated in one from supergravity giving a wino LSP and in
the other radiatively giving a Higgsino LSP. The environmental restriction on
dark matter fixes the LSP mass to the TeV domain, so that the squark and
slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study
the spectrum, dark matter and collider signals of these two versions of Spread
SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in
cosmic rays arise from dark matter annihilations in the halo; exotic short
charged tracks occur at the LHC, at least for the wino LSP; and there are the
eventual possibilities of direct detection of dark matter and detailed
exploration of the TeV-scale states at a future linear collider. Gauge coupling
unification is as in minimal SUSY theories.
If SUSY breaking is mediated at order X, a much less hierarchical spectrum
results---similar to that of the MSSM, but with the superpartner masses 1--2
orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
- …
