275 research outputs found

    Statistical Modeling of Single Target Cell Encapsulation

    Get PDF
    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.Wallace H. Coulter Foundation (Young Investigator in Bioengineering Award)National Institutes of Health (U.S.) (Grant R01AI081534)National Institutes of Health (U.S.) (Grant R21AI087107

    A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests

    Get PDF
    Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary – albeit often ineffective – treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.Stanley Medical Research InstituteNational Institutes of Health (U.S.) (R01DA028301)National Institutes of Health (U.S.) (R01DA030321

    CDK-Mediated Regulation of Cell Functions via c-Jun Phosphorylation and AP-1 Activation

    Get PDF
    Cyclin-dependent kinases (CDKs) and their targets have been primarily associated with regulation of cell-cycle progression. Here we identify c-Jun, a transcription factor involved in the regulation of a broad spectrum of cellular functions, as a newly recognized CDK substrate. Using immune cells from mouse and human, and several complementary in vitro and in vivo approaches including dominant negative protein expression, pharmacologic inhibitors, kinase assays and CDK4 deficient cells, we demonstrate the ability of CDK4 to phosphorylate c-Jun. Additionally, the activity of AP-1, a ubiquitous transcription factor containing phosphorylated c-Jun as a subunit, was inhibited by abrogating CDK4. Surprisingly, the regulation of c-Jun phosphorylation by CDK4 occurred in non-dividing cells, indicating that this pathway is utilized for cell functions that are independent of proliferation. Our studies identify a new substrate for CDK4 and suggest a mechanism by which CDKs can regulate multiple cellular activation functions, not all of which are directly associated with cell cycle progression. These findings point to additional roles of CDKs in cell signaling and reveal potential implications for therapeutic manipulations of this kinase pathway

    MAO-B Elevation in Mouse Brain Astrocytes Results in Parkinson's Pathology

    Get PDF
    Age-related increases in monoamine oxidase B (MAO-B) may contribute to neurodegeneration associated with Parkinson's disease (PD). The MAO-B inhibitor deprenyl, a long-standing antiparkinsonian therapy, is currently used clinically in concert with the dopamine precursor L-DOPA. Clinical studies suggesting that deprenyl treatment alone is not protective against PD associated mortality were targeted to symptomatic patients. However, dopamine loss is at least 60% by the time PD is symptomatically detectable, therefore lack of effect of MAO-B inhibition in these patients does not negate a role for MAO-B in pre-symptomatic dopaminergic loss. In order to directly evaluate the role of age-related elevations in astroglial MAO-B in the early initiation or progression of PD, we created genetically engineered transgenic mice in which MAO-B levels could be specifically induced within astroglia in adult animals. Elevated astrocytic MAO-B mimicking age related increase resulted in specific, selective and progressive loss of dopaminergic neurons in the substantia nigra (SN), the same subset of neurons primarily impacted in the human condition. This was accompanied by other PD-related alterations including selective decreases in mitochondrial complex I activity and increased mitochondrial oxidative stress. Along with a global astrogliosis, we observed local microglial activation within the SN. These pathologies correlated with decreased locomotor activity. Importantly, these events occurred even in the absence of the PD-inducing neurotoxin MPTP. Our data demonstrates that elevation of murine astrocytic MAO-B by itself can induce several phenotypes of PD, signifying that MAO-B could be directly involved in multiple aspects of disease neuropathology. Mechanistically this may involve increases in membrane permeant H2O2 which can oxidize dopamine within dopaminergic neurons to dopaminochrome which, via interaction with mitochondrial complex I, can result in increased mitochondrial superoxide. Our inducible astrocytic MAO-B transgenic provides a novel model for exploring pathways involved in initiation and progression of several key features associated with PD pathology and for therapeutic drug testing

    Increased Infarct Wall Thickness by a Bio-Inert Material Is Insufficient to Prevent Negative Left Ventricular Remodeling after Myocardial Infarction

    Get PDF
    Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV) remodeling post-myocardial infarction (MI). However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling.Poly(ethylene glycol) (PEG) gels of storage modulus G' = 0.5±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI) at 7±1 day(s) post-MI as a baseline and again post-injection 49±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01). However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01). The cellular response to injection was also similar in both groups.The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling

    Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at √<i>s</i>=13 TeV

    Get PDF

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯

    Measurement of inclusive very forward jet cross sections in proton-lead collisions at \sqrt{sNN} = 5:02 TeV

    Get PDF
    Measurements of differential cross sections for inclusive very forward jet production in proton-lead collisions as a function of jet energy are presented. The data were collected with the CMS experiment at the LHC in the laboratory pseudorapidity range −6.6 < η < −5.2. Asymmetric beam energies of 4 TeV for protons and 1.58 TeV per nucleon for Pb nuclei were used, corresponding to a center-of-mass energy per nucleon pair of \sqrt{sNN} = 5:02 TeV. Collisions with either the proton (p+Pb) or the ion (Pb+p) traveling towards the negative η hemisphere are studied. The jet cross sections are unfolded to stable-particle level cross sections with p_{T} ≳ 3 GeV, and compared to predictions from various Monte Carlo event generators. In addition, the cross section ratio of p+Pb and Pb+p data is presented. The results are discussed in terms of the saturation of gluon densities at low fractional parton momenta. None of the models under consideration describes all the data over the full jet-energy range and for all beam configurations. Discrepancies between the differential cross sections in data and model predictions of more than two orders of magnitude are observed

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe
    corecore