1,255 research outputs found
Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins
Interactions among the three structural domains of Bacillus 1huringiensis Cn.l toxins %~ere investigated by functional analysis of chinieric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain 1 or domain III among CrylAb, Cn,lAc, CrylC, and CrylE. The activity of the purified trypsinactivated chimeric toxins was evaluiated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only CrylC was active against these cells and only chimeras possessing domain II from CrylC were functional. Combination of domain 1 from CrylE Niith domains Il and III from CrylC, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was frorn Cr31M or CrylAc were slightly smaller than those formed by toxins in which domain I was from CrylC. The properties of the pores formed by the chimeras are therefore likely to result froin an interaction between domain I and domain II or 111. Domain III appears to modulate the activity of the chimeric toxins: combination of domain 111 from CrylAb with domains 1 and II of CrylC gave a protein which was more strongly active than CrylC. (Résumé d'auteur
Age structure landscapes emerge from the equilibrium between aging and rejuvenation in bacterial populations.
The physiological asymmetry between daughters of a mother bacterium is produced by the inheritance of either old poles, carrying non-genetic damage, or newly synthesized poles. However, as bacteria display long-term growth stability leading to physiological immortality, there is controversy on whether asymmetry corresponds to aging. Here we show that deterministic age structure landscapes emerge from physiologically immortal bacterial lineages. Through single-cell microscopy and microfluidic techniques, we demonstrate that aging and rejuvenating bacterial lineages reach two distinct states of growth equilibria. These equilibria display stabilizing properties, which we quantified according to the compensatory trajectories of continuous lineages throughout generations. Finally, we show that the physiological asymmetry between aging and rejuvenating lineages produces complex age structure landscapes, resulting in a deterministic phenotypic heterogeneity that is neither an artifact of starvation nor a product of extrinsic damage. These findings indicate that physiological immortality and cellular aging can both be manifested in single celled organisms
Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Huebner) (Lepidoptera : Noctuidae)
Selection of resistance in Spodoptera exigua (Hubner) to an HD-1 spore-crystal mixture, CryIC (HD-133) inclusion bodies, and trypsinized toxin from Bacillus thuringiensis' subsp, aizawai and B. thuringiensis subsp. entomocidus was attempted by using laboratory bioassays. No resistance to the HD-1 spore-crystal mixture could be achieved after 20 generations of selection. Significant levels of resistance (11-fold) to CryIC inclusion bodies expressed in Escherichia coli were observed after seven generations, Subsequent selection of the CryIC-resistant population with trypsinized CryIC toxin resulted, after 21 generations of CryIC selection, in a population of S. exigua that exhibited only 8% mortality at the highest toxin concentration tested (320 mu g/g), whereas the 50% lethal concentration was 4.30 mu g/g for the susceptible colony. Insects resistant to CryIC toxin from HD-133 also were resistant to trypsinized CryIA(b), CryIC from B. thuringiensis subsp. entomocidus, CryIE-CryIC fusion protein (G27), CryIH, and CryIIA. In vitro binding experiments with brush border membrane vesicles showed a twofold decrease in maximum CryIC binding, a fivefold difference in K-d, and no difference in the concentration of binding sites for the CryIC-resistant insects compared with those for the susceptible insects, Resistance to CryIC was significantly reduced by the addition of HD-1 spores, Resistance to the CryIC toxin was still observed 12 generations after CryIC selection was removed. These results suggest that, in S. exigua, resistance to a single protein is more likely to occur than resistance to spore crystal mixtures and that once resistance occurs, insects will be resistant to many other Cry proteins, These results have important implications for devising S. exigua resistance management strategies in the field
Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer
In addition to the electric field E(r), the associated magnetic field H(r)
and current density J(r) characterize any electromagnetic device, providing
insight into antenna coupling and mutual impedance. We demonstrate the optical
analogue of the radio frequency vector network analyzer implemented in
interferometric homodyne scattering-type scanning near-field optical microscopy
(s-SNOM) for obtaining E(r), H(r), and J(r). The approach is generally
applicable and demonstrated for the case of a linear coupled-dipole antenna in
the mid-infrared. The determination of the underlying 3D vector electric
near-field distribution E(r) with nanometer spatial resolution and full phase
and amplitude information is enabled by the design of probe tips with
selectivity with respect to E-parallel and E-perpendicular fabricated by
focused ion-beam milling and nano-CVD
Mapping localized surface plasmons within silver nanocubes using cathodoluminescence hyperspectral imaging
Localized surface plasmons within silver nanocubes less than 50 nm in size are investigated using high resolution cathodoluminescence hyperspectral imaging. Multivariate statistical analysis of the multidimensional luminescence dataset allows both the identification of distinct spectral features in the emission and the mapping of their spatial distribution. These results show a 490 nm peak emitted from the cube faces, with shorter wavelength luminescence coming from the vertices and edges; this provides direct experimental confirmation of theoretical predictions
Vascular responses of the extremities to transdermal application of vasoactive agents in Caucasian and African descent individuals
This is an accepted manuscript of an article published by Springer in European Journal of Applied Physiology on 04/04/2015, available online: https://doi.org/10.1007/s00421-015-3164-2
The accepted version of the publication may differ from the final published version.© 2015, Springer-Verlag Berlin Heidelberg. Purpose: Individuals of African descent (AFD) are more susceptible to non-freezing cold injury than Caucasians (CAU) which may be due, in part, to differences in the control of skin blood flow. We investigated the skin blood flow responses to transdermal application of vasoactive agents. Methods: Twenty-four young males (12 CAU and 12 AFD) undertook three tests in which iontophoresis was used to apply acetylcholine (ACh 1 w/v %), sodium nitroprusside (SNP 0.01 w/v %) and noradrenaline (NA 0.5 mM) to the skin. The skin sites tested were: volar forearm, non-glabrous finger and toe, and glabrous finger (pad) and toe (pad). Results: In response to SNP on the forearm, AFD had less vasodilatation for a given current application than CAU (P = 0.027–0.004). ACh evoked less vasodilatation in AFD for a given application current in the non-glabrous finger and toe compared with CAU (P = 0.043–0.014) with a lower maximum vasodilatation in the non-glabrous finger (median [interquartile], AFD n = 11, 41[234] %, CAU n = 12, 351[451] %, P = 0.011) and non-glabrous toe (median [interquartile], AFD n = 9, 116[318] %, CAU n = 12, 484[720] %, P = 0.018). ACh and SNP did not elicit vasodilatation in the glabrous skin sites of either group. There were no ethnic differences in response to NA. Conclusion: AFD have an attenuated endothelium-dependent vasodilatation in non-glabrous sites of the fingers and toes compared with CAU. This may contribute to lower skin temperature following cold exposure and the increased risk of cold injuries experienced by AFD.Published versio
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
TISE: Bag of Metrics for Text-to-Image Synthesis Evaluation
In this paper, we conduct a study on the state-of-the-art methods for
text-to-image synthesis and propose a framework to evaluate these methods. We
consider syntheses where an image contains a single or multiple objects. Our
study outlines several issues in the current evaluation pipeline: (i) for image
quality assessment, a commonly used metric, e.g., Inception Score (IS), is
often either miscalibrated for the single-object case or misused for the
multi-object case; (ii) for text relevance and object accuracy assessment,
there is an overfitting phenomenon in the existing R-precision (RP) and
Semantic Object Accuracy (SOA) metrics, respectively; (iii) for multi-object
case, many vital factors for evaluation, e.g., object fidelity, positional
alignment, counting alignment, are largely dismissed; (iv) the ranking of the
methods based on current metrics is highly inconsistent with real images. To
overcome these issues, we propose a combined set of existing and new metrics to
systematically evaluate the methods. For existing metrics, we offer an improved
version of IS named IS* by using temperature scaling to calibrate the
confidence of the classifier used by IS; we also propose a solution to mitigate
the overfitting issues of RP and SOA. For new metrics, we develop counting
alignment, positional alignment, object-centric IS, and object-centric FID
metrics for evaluating the multi-object case. We show that benchmarking with
our bag of metrics results in a highly consistent ranking among existing
methods that is well-aligned with human evaluation. As a by-product, we create
AttnGAN++, a simple but strong baseline for the benchmark by stabilizing the
training of AttnGAN using spectral normalization. We also release our toolbox,
so-called TISE, for advocating fair and consistent evaluation of text-to-image
models.Comment: Accepted to ECCV 2022; TISE toolbox is available at
https://github.com/VinAIResearch/tise-toolbo
A link between aging and persistence
Despite the various strategies that microorganisms have evolved to resist antibiotics, survival to drug treatments can be driven by subpopulations of susceptible bacteria in a transient state of dormancy. This phenotype, known as bacterial persistence, arises due to a natural and ubiquitous heterogeneity of growth states in bacterial populations. Nonetheless, the unifying mechanism of persistence remains unknown, with several pathways being able to trigger the phenotype. Here, we show that asymmetric damage partitioning, a form of cellular aging, produces the underlying phenotypic heterogeneity upon which persistence is triggered. Using single-cell microscopy and microfluidic devices, we demonstrate that deterministic asymmetry in exponential phase populations leads to a state of growth stability, which prevents the spontaneous formation of persisters. However, as populations approach stationary phase, aging bacteria—those inheriting more damage upon division—exhibit a sharper growth rate decline, increased probability of growth arrest, and higher persistence rates. These results indicate that persistence triggers are biased by bacterial asymmetry, thus acting upon the deterministic heterogeneity produced by cellular aging. This work suggests unifying mechanisms for persistence and offers new perspectives on the treatment of recalcitrant infections
- …
