72 research outputs found

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Immunity of an Alternative Host Can Be Overcome by Higher Densities of Its Parasitoids Palmistichus elaeisis and Trichospilus diatraeae

    Get PDF
    Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies

    Mannose-binding lectin genotypes: lack of association with susceptibility to thoracic empyema.

    Get PDF
    BACKGROUND: The role of the innate immune protein mannose-binding lectin (MBL) in host defence against severe respiratory infection remains controversial. Thoracic empyema is a suppurative lung infection that arises as a major complication of pneumonia and is associated with a significant mortality. Although the pathogenesis of thoracic empyema is poorly understood, genetic susceptibility loci for this condition have recently been identified. The possible role of MBL genotypic deficiency in susceptibility to thoracic empyema has not previously been reported. METHODS: To investigate this further we compared the frequencies of the six functional MBL polymorphisms in 170 European individuals with thoracic empyema and 225 healthy control individuals. RESULTS: No overall association was observed between MBL genotypic deficiency and susceptibility to thoracic empyema (2 x 2 Chi square = 0.02, P = 0.87). Furthermore, no association was seen between MBL deficiency and susceptibility to the Gram-positive or pneumococcal empyema subgroups. MBL genotypic deficiency did not associate with progression to death or requirement for surgery. CONCLUSIONS: Our results suggest that MBL genotypic deficiency does not associate with susceptibility to thoracic empyema in humans

    Stabilising selection on immune response in male black grouse Lyrurus tetrix

    Get PDF
    Illnesses caused by a variety of micro- and macro- organisms can negatively affect individuals’ fitness, leading to the expectation that immunity is under positive selection. However, immune responses are costly and individuals must trade-off their immune response with other fitness components (e.g. survival or reproductive success) meaning that individuals with intermediate response may have the greatest overall fitness. Such a process might be particularly acute in species with strong sexual selection because the condition-dependence of male secondary sexual-traits might lead to striking phenotypic differences amongst males of different immune response levels. We tested whether there is selection on immune response by survival and reproduction in yearling and adult male black grouse (Lyrurus tetrix) following an immune challenge with a novel antigen and tested the hypothesis that sexual signals and body mass are honest signals of the immune response. We show that yearling males with highest immune response to these challenges had higher survival, but the reverse was true for adults. Adults with higher responses had highest mass loss and adult males with intermediate immune response had highest mating success. Tail length was related to baseline response in adults and more weakly in yearlings. Our findings reveal the complex fitness consequences of mounting an immune response across age classes. Such major differences in the direction and magnitude of selection in multiple fitness components is an alternative route underpinning the stabilizing selection of immune responses with an intermediate immune response being optimal

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
    corecore