111 research outputs found
Pressure–temperature–time and REE mineral evolution in low- to medium-grade polymetamorphic units (Austroalpine Unit, Eastern Alps)
We investigated rare earth element (REE) minerals in low- to medium-grade metapelites sampled in two nappes of the Austroalpine Unit (Eastern Alps, Austria). Combining microstructural and chemical characterization of the main and REE minerals with thermodynamic forward modeling, Raman spectroscopy on carbonaceous material (RSCM) thermometry and in situ U–Th–Pb dating reveal a polymetamorphic evolution of all samples. In the hanging wall nappe, allanite and REE epidote formed during Permian metamorphism (275–261 Ma, 475–520 °C, 0.3–0.4 GPa). In one sample, Cretaceous (ca. 109 Ma) REE epidote formed at ∼440 °C and 0.4–0.8 GPa at the expense of Permian monazite clusters. In the footwall nappe, large, chemically zoned monazite porphyroblasts record both Permian (283–256 Ma, 560 °C, 0.4 GPa) and Cretaceous (ca. 87 Ma, 550 °C, 1.0–1.1 GPa) metamorphism. Polymetamorphism produced a wide range of complex REE-mineral-phase relationships and microstructures. Despite the complexity, we found that bulk rock Ca, Al and Na contents are the main factor controlling REE mineral stability; variations thereof explain differences in the REE mineral assemblages of samples with identical pressure and temperature (P–T) paths. Therefore, REE minerals are also excellent geochronometers to resolve the metamorphic evolution of low- to medium-grade rocks in complex tectonic settings. The recognition that the main metamorphic signature in the hanging wall is Permian implies a marked P–T difference of ∼250 °C and at least 0.5 GPa, requiring a major normal fault between the two nappes which accommodated the exhumation of the footwall in the Cretaceous. Due to striking similarities in setting and timing, we put this low-angle detachment in context with other Late Cretaceous low-angle detachments from the Austroalpine domain. Together, they form an extensive crustal structure that we tentatively term the “Austroalpine Detachment System”.</p
Raman spectroscopy as a tool to determine the thermal maturity of organic matter : application to sedimentary, metamorphic and structural geology
Raman spectrometry is a rapid, non-destructive alternative to conventional tools employed to assess the thermal alteration of organic matter (OM). Raman may be used to determine vitrinite reflectance equivalent OM maturity values for petroleum exploration, to provide temperature data for metamorphic studies, and to determine the maximum temperatures reached in fault zones. To achieve the wider utilisation of Raman, the spectrum processing method, and the positions and nomenclature of Raman bands and parameters, all need to be standardized. We assess the most widely used Raman parameters as well as the best analytical practices that have been proposed. Raman band separation and G-band full-width at half-maximum are the best parameters to estimate the maturity for rocks following diagenesis–metagenesis. For metamorphic studies, the ratios of band areas after performing deconvolution are generally used. Further work is needed on the second-order region, as well as assessing the potential of using integrated areas on the whole spectrum, to increase the calibrated temperature range of Raman parameters. Applying Raman spectroscopy on faults has potential to be able to infer both temperature and deformation processes. We propose a unified terminology for OM Raman bands and parameters that should be adopted in the future. The popular method of fitting several functions to a spectrum is generally unnecessary, as Raman parameters determined from an un-deconvoluted spectrum can track the maturity of OM. To progress the Raman application as a geothermometer a standardized approach must be developed and tested by means of an interlaboratory calibration exercise using reference materials
Interação de vários sistemas de escoamento em pequenas bacias alpinas: modelo conceitual do vale superior do aquífero Gurk, Caríntia, Áustria
Origin of deformed halite hopper crystals, pseudomorphic anhydrite cubes and polyhalite in Alpine evaporites (Austria, Germany)
The fractal properties of geochemical landscapes as an indicator of weathering and transport processes within the Eastern Alps
Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry
Thermal history of the Carnic Alps (Southern Alps, Austria) and its palaeogeographic implications
Smectite to illite transformation in a geothermally complex Mesozoic sequence (Drau Range, Eastern Alps, Austria)
Thermal modeling of Carboniferous to Triassic sediments of the Karawanken Range (Southern Alps) as a tool for paleogeographic reconstructions in the Alpine–Dinaridic–Pannonian realm
- …
