2,741 research outputs found
Hexagonal convection patterns in atomistically simulated fluids
Molecular dynamics simulation has been used to model pattern formation in
three-dimensional Rayleigh--Benard convection at the discrete-particle level.
Two examples are considered, one in which an almost perfect array of
hexagonally-shaped convection rolls appears, the other a much narrower system
that forms a set of linear rolls; both pattern types are familiar from
experiment. The nature of the flow within the convection cells and quantitative
aspects of the development of the hexagonal planform based on automated polygon
subdivision are analyzed. Despite the microscopic scale of the system,
relatively large simulations with several million particles and integration
timesteps are involved.Comment: 4 pages, 6 figures (color figures have low resolution, high
resolution figures available on author's website) Minor changes to text. To
appear in PRE (Rapid Comm
Molecular dynamics simulations of ballistic annihilation
Using event-driven molecular dynamics we study one- and two-dimensional
ballistic annihilation. We estimate exponents and that describe
the long-time decay of the number of particles () and of
their typical velocity (). To a good accuracy our results
confirm the scaling relation . In the two-dimensional case our
results are in a good agreement with those obtained from the Boltzmann kinetic
theory.Comment: 4 pages; some changes; Physical Review E (in press
Memory effects on the statistics of fragmentation
We investigate through extensive molecular dynamics simulations the
fragmentation process of two-dimensional Lennard-Jones systems. After
thermalization, the fragmentation is initiated by a sudden increment to the
radial component of the particles' velocities. We study the effect of
temperature of the thermalized system as well as the influence of the impact
energy of the ``explosion'' event on the statistics of mass fragments. Our
results indicate that the cumulative distribution of fragments follows the
scaling ansatz , where is
the mass, and are cutoff parameters, and is a scaling
exponent that is dependent on the temperature. More precisely, we show clear
evidence that there is a characteristic scaling exponent for each
macroscopic phase of the thermalized system, i.e., that the non-universal
behavior of the fragmentation process is dictated by the state of the system
before it breaks down.Comment: 5 pages, 8 figure
Stratified horizontal flow in vertically vibrated granular layers
A layer of granular material on a vertically vibrating sawtooth-shaped base
exhibits horizontal flow whose speed and direction depend on the parameters
specifying the system in a complex manner. Discrete-particle simulations reveal
that the induced flow rate varies with height within the granular layer and
oppositely directed flows can occur at different levels. The behavior of the
overall flow is readily understood once this novel feature is taken into
account.Comment: 4 pages, 6 figures, submitte
Leaving College: Why Students Withdrew from a University
The purpose of this study was to determine the reasons why students withdrew during a semester from a mid-sized, comprehensive university located in the Midwest. Six hundred forty-five students were asked to complete the ACT Withdrawing/Non-returning Student Survey during the 1992-93 academic year and summer semester. Three hundred sixty-five completed surveys were returned for a 57% response rate.
Respondents indicated many different reasons for leaving which varied by year in school and whether or not the respondent was a graduate or undergraduate student. There was no typical withdrawing student and there were many reasons students withdrew over which the university has little or no control. The report concludes with a discussion of Vincent Tinto\u27s (1993) ideas concerning institutional departure.
The retention and persistence of students in higher education has been the focus of serious intellectual inquiry for many years. Various concepts of institutional departure, persistence and models for programmatic interventions to reduce departure have been developed. (For example, see Pascarella & Terenzini, 1991; Stage & Rushin, 1993; Steele, Kennedy, & Gordon, 1993; Tinto, 1993; Wolfe, 1993.) The purpose of this study was to focus on one aspect of student attrition, and. to investigate the reasons and general trends as . to why students withdrew during a semester from a midsized comprehensive university located in the Midwest. This information could then be used to guide institutional action
Scaling of dynamics with the range of interaction in short-range attractive colloids
We numerically study the dependence of the dynamics on the range of
interaction for the short-range square well potential. We find that,
for small , dynamics scale exactly in the same way as thermodynamics,
both for Newtonian and Brownian microscopic dynamics. For interaction ranges
from a few percent down to the Baxter limit, the relative location of the
attractive glass line and the liquid-gas line does not depend on . This
proves that in this class of potentials, disordered arrested states (gels) can
be generated only as a result of a kinetically arrested phase separation.Comment: 4 pages, 4 figure
Noncontact atomic force microscopy simulator with phase-locked-loop controlled frequency detection and excitation
A simulation of an atomic force microscope operating in the constant
amplitude dynamic mode is described. The implementation mimics the electronics
of a real setup including a digital phase-locked loop (PLL). The PLL is not
only used as a very sensitive frequency detector, but also to generate the
time-dependent phase shifted signal driving the cantilever. The optimum
adjustments of individual functional blocks and their joint performance in
typical experiments are determined in detail. Prior to testing the complete
setup, the performances of the numerical PLL and of the amplitude controller
were ascertained to be satisfactory compared to those of the real components.
Attention is also focused on the issue of apparent dissipation, that is, of
spurious variations in the driving amplitude caused by the nonlinear
interaction occurring between the tip and the surface and by the finite
response times of the various controllers. To do so, an estimate of the minimum
dissipated energy that is detectable by the instrument upon operating
conditions is given. This allows us to discuss the relevance of apparent
dissipation that can be conditionally generated with the simulator in
comparison to values reported experimentally. The analysis emphasizes that
apparent dissipation can contribute to the measured dissipation up to 15% of
the intrinsic dissipated energy of the cantilever interacting with the surface,
but can be made negligible when properly adjusting the controllers, the PLL
gains and the scan speed. It is inferred that the experimental values of
dissipation usually reported in the literature cannot only originate in
apparent dissipation, which favors the hypothesis of "physical" channels of
dissipation
Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation
Hard Spheres: Crystallization and Glass Formation
Motivated by old experiments on colloidal suspensions, we report molecular
dynamics simulations of assemblies of hard spheres, addressing crystallization
and glass formation. The simulations cover wide ranges of polydispersity s
(standard deviation of the particle size distribution divided by its mean) and
particle concentration. No crystallization is observed for s > 0.07. For 0.02 <
s < 0.07, we find that increasing the polydispersity at a given concentration
slows down crystal nucleation. The main effect here is that polydispersity
reduces the supersaturation since it tends to stabilise the fluid but to
destabilise the crystal. At a given polydispersity (< 0.07) we find three
regimes of nucleation: standard nucleation and growth at concentrations in and
slightly above the coexistence region; "spinodal nucleation", where the free
energy barrier to nucleation appears to be negligible, at intermediate
concentrations; and, at the highest concentrations, a new mechanism, still to
be fully understood, which only requires small re-arrangement of the particle
positions. The cross-over between the second and third regimes occurs at a
concentration, around 58% by volume, where the colloid experiments show a
marked change in the nature of the crystals formed and the particle dynamics
indicate an "ideal" glass transition
- …
