832 research outputs found

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    `Iconoclastic', Categorical Quantum Gravity

    Full text link
    This is a two-part, `2-in-1' paper. In Part I, the introductory talk at `Glafka--2004: Iconoclastic Approaches to Quantum Gravity' international theoretical physics conference is presented in paper form (without references). In Part II, the more technical talk, originally titled ``Abstract Differential Geometric Excursion to Classical and Quantum Gravity'', is presented in paper form (with citations). The two parts are closely entwined, as Part I makes general motivating remarks for Part II.Comment: 34 pages, in paper form 2 talks given at ``Glafka--2004: Iconoclastic Approaches to Quantum Gravity'' international theoretical physics conference, Athens, Greece (summer 2004

    `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    Get PDF
    Based on the algebraico-categorical (:sheaf-theoretic and sheaf cohomological) conceptual and technical machinery of Abstract Differential Geometry, a new, genuinely background spacetime manifold independent, field quantization scenario for vacuum Einstein gravity and free Yang-Mills theories is introduced. The scheme is coined `third quantization' and, although it formally appears to follow a canonical route, it is fully covariant, because it is an expressly functorial `procedure'. Various current and future Quantum Gravity research issues are discussed under the light of 3rd-quantization. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly written that the Editor for this volume is Daniele Oriti, with CUP as publisher. I apologize for the mistake.

    Reversible Pressure-Induced Amorphization in Solid C70 : Raman and Photoluminescence Study

    Full text link
    We have studied single crystals of C70C_{70} by Raman scattering and photoluminescence in the pressure range from 0 to 31.1 GPa. The Raman spectrum at 31.1 GPa shows only a broad band similar to that of the amorphous carbon without any trace of the Raman lines of C70C_{70}. After releasing the pressure from 31.1 GPa, the Raman and the photoluminescence spectra of the recovered sample are that of the starting C70C_{70} crystal. These results indicate that the C70C_{70} molecules are stable upto 31.1 GPa and the amorphous carbon high pressure phase is reversible, in sharp contrast to the results on solid C60C_{60}. A qualitative explaination is suggested in terms of inter- versus intra-molecular interactions.Comment: To appear in Phys. Rev. Lett., 12 pages, RevTeX (preprint format), 3 figures available upon reques

    Revealing an Unexpectedly Low Electron Injection Threshold via Reinforced Shock Acceleration

    Get PDF
    Collisionless shock waves, found in supernova remnants, interstellar, stellar, and planetary environments, and laboratories, are one of nature’s most powerful particle accelerators. This study combines in situ satellite measurements with recent theoretical developments to establish a reinforced shock acceleration model for relativistic electrons. Our model incorporates transient structures, wave-particle interactions, and variable stellar wind conditions, operating collectively in a multiscale set of processes. We show that the electron injection threshold is on the order of suprathermal range, obtainable through multiple different phenomena abundant in various plasma environments. Our analysis demonstrates that a typical shock can consistently accelerate electrons into very high (relativistic) energy ranges, refining our comprehension of shock acceleration while providing insight on the origin of electron cosmic rays

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Impact of a single nucleotide polymorphism on the 3D protein structure and ubiquitination activity of E3 ubiquitin ligase arkadia

    Get PDF
    Single nucleotide polymorphisms (SNPs) are genetic variations which can play a vital role in the study of human health. SNP studies are often used to identify point mutations that are associated with diseases. Arkadia (RNF111) is an E3 ubiquitin ligase that enhances transforming growth factor-beta (TGF-β) signaling by targeting negative regulators for degradation. Dysregulation of the TGF-β pathway is implicated in cancer because it exhibits tumor suppressive activity in normal cells while in tumor cells it promotes invasiveness and metastasis. Τhe SNP CGT > TGT generated an amino-acid (aa) substitution of Arginine 957 to Cysteine on the enzymatic RING domain of Arkadia. This was more prevalent in a tumor than in a normal tissue sample of a patient with colorectal cancer. This prompted us to investigate the effect of this mutation in the structure and activity of Arkadia RING. We used nuclear magnetic resonance (NMR) to analyze at an atomic-level the structural and dynamic properties of the R957C Arkadia RING domain, while ubiquitination and luciferase assays provided information about its enzymatic functionality. Our study showed that the R957C mutation changed the electrostatic properties of the RING domain however, without significant effects on the structure of its core region. However, the functional studies revealed that the R957C Arkadia exhibits significantly increased enzymatic activity supporting literature data that Arkadia within tumor cells promotes aggressive and metastatic behavior
    corecore