4,440 research outputs found
A linear lower bound for incrementing a space-optimal integer representation in the bit-probe model
We present the first linear lower bound for the number of bits required to be
accessed in the worst case to increment an integer in an arbitrary space-
optimal binary representation. The best previously known lower bound was
logarithmic. It is known that a logarithmic number of read bits in the worst
case is enough to increment some of the integer representations that use one
bit of redundancy, therefore we show an exponential gap between space-optimal
and redundant counters.
Our proof is based on considering the increment procedure for a space optimal
counter as a permutation and calculating its parity. For every space optimal
counter, the permutation must be odd, and implementing an odd permutation
requires reading at least half the bits in the worst case. The combination of
these two observations explains why the worst-case space-optimal problem is
substantially different from both average-case approach with constant expected
number of reads and almost space optimal representations with logarithmic
number of reads in the worst case.Comment: 12 pages, 4 figure
Stuttering Min oscillations within E. coli bacteria: A stochastic polymerization model
We have developed a 3D off-lattice stochastic polymerization model to study
subcellular oscillation of Min proteins in the bacteria Escherichia coli, and
used it to investigate the experimental phenomenon of Min oscillation
stuttering. Stuttering was affected by the rate of immediate rebinding of MinE
released from depolymerizing filament tips (processivity), protection of
depolymerizing filament tips from MinD binding, and fragmentation of MinD
filaments due to MinE. Each of processivity, protection, and fragmentation
reduces stuttering, speeds oscillations, and reduces MinD filament lengths.
Neither processivity or tip-protection were, on their own, sufficient to
produce fast stutter-free oscillations. While filament fragmentation could, on
its own, lead to fast oscillations with infrequent stuttering; high levels of
fragmentation degraded oscillations. The infrequent stuttering observed in
standard Min oscillations are consistent with short filaments of MinD, while we
expect that mutants that exhibit higher stuttering frequencies will exhibit
longer MinD filaments. Increased stuttering rate may be a useful diagnostic to
find observable MinD polymerization in experimental conditions.Comment: 21 pages, 7 figures, missing unit for k_f inserte
Pebble Mine: Fish, Minerals, and Testing the Limits of Alaska’s “Large Mine Permitting Process”
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
During division it is of primary importance for a cell to correctly determine
the site of cleavage. The bacterium Escherichia coli divides in the center,
producing two daughter cells of equal size. Selection of the center as the
correct division site is in part achieved by the Min-proteins. They oscillate
between the two cell poles and thereby prevent division at these locations.
Here, a phenomenological description for these oscillations is presented, where
lateral interactions between proteins on the cell membrane play a key role.
Solutions to the dynamic equations are compared to experimental findings. In
particular, the temporal period of the oscillations is measured as a function
of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog
Predictions from a stochastic polymer model for the MinDE dynamics in E.coli
The spatiotemporal oscillations of the Min proteins in the bacterium
Escherichia coli play an important role in cell division. A number of different
models have been proposed to explain the dynamics from the underlying
biochemistry. Here, we extend a previously described discrete polymer model
from a deterministic to a stochastic formulation. We express the stochastic
evolution of the oscillatory system as a map from the probability distribution
of maximum polymer length in one period of the oscillation to the probability
distribution of maximum polymer length half a period later and solve for the
fixed point of the map with a combined analytical and numerical technique. This
solution gives a theoretical prediction of the distributions of both lengths of
the polar MinD zones and periods of oscillations -- both of which are
experimentally measurable. The model provides an interesting example of a
stochastic hybrid system that is, in some limits, analytically tractable.Comment: 16 page
A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division
The Min system in Escherichia coli directs division to the centre of the cell
through pole-to-pole oscillations of the MinCDE proteins. We present a one
dimensional stochastic model of these oscillations which incorporates membrane
polymerisation of MinD into linear chains. This model reproduces much of the
observed phenomenology of the Min system, including pole-to-pole oscillations
of the Min proteins. We then apply this model to investigate the Min system
during cell division. Oscillations continue initially unaffected by the closing
septum, before cutting off rapidly. The fractions of Min proteins in the
daughter cells vary widely, from 50%-50% up to 85%-15% of the total from the
parent cell, suggesting that there may be another mechanism for regulating
these levels in vivo.Comment: 19 pages, 12 figures (25 figure files); published at
http://www.iop.org/EJ/journal/physbi
The role of dredge-up in double white dwarf mergers
We present the results of an investigation of the dredge-up and mixing during
the merger of two white dwarfs with different chemical compositions by
conducting hydrodynamic simulations of binary mergers for three representative
mass ratios. In all the simulations, the total mass of the two white dwarfs is
. Mergers involving a CO and a He white dwarf have
been suggested as a possible formation channel for R Coronae Borealis type
stars, and we are interested in testing if such mergers lead to conditions and
outcomes in agreement with observations. Even if the conditions during the
merger and subsequent nucleosynthesis favor the production of , the merger must avoid dredging up large amounts of , or
else it will be difficult to produce sufficient to explain
the oxygen ratio observed to be of order unity. We performed a total of 9
simulations using two different grid-based hydrodynamics codes using fixed and
adaptive meshes, and one smooth particle hydrodynamics (SPH) code. We find that
in most of the simulations, of is
indeed dredged up during the merger. However, in SPH simulations where the
accretor is a hybrid He/CO white dwarf with a layer of
helium on top, we find that no is being dredged up, while in
the simulation of has been
brought up, making a WD binary consisting of a hybrid CO/He WD and a companion
He WD an excellent candidate for the progenitor of RCB stars.Comment: Accepted for publication in Ap
Inclusive versus Exclusive EM Processes in Relativistic Nuclear Systems
Connections are explored between exclusive and inclusive electron scattering
within the framework of the relativistic plane-wave impulse approximation,
beginning with an analysis of the model-independent kinematical constraints to
be found in the missing energy--missing momentum plane. From the interplay
between these constraints and the spectral function basic features of the
exclusive and inclusive nuclear responses are seen to arise. In particular, the
responses of the relativistic Fermi gas and of a specific hybrid model with
confined nucleons in the initial state are compared in this work. As expected,
the exclusive responses are significantly different in the two models, whereas
the inclusive ones are rather similar. By extending previous work on the
relativistic Fermi gas, a reduced response is introduced for the hybrid model
such that it fulfills the Coulomb and the higher-power energy-weighted sum
rules. While incorporating specific classes of off-shellness for the struck
nucleons, it is found that the reducing factor required is largely
model-independent and, as such, yields a reduced response that is useful for
extracting the Coulomb sum rule from experimental data. Finally, guided by the
difference between the energy-weighted sum rules of the two models, a version
of the relativistic Fermi gas is devised which has the 0, 1 and 2 moments of the charge response which agree rather well
with those of the hybrid model: this version thus incorporates {\em a priori}
the binding and confinement effects of the stuck nucleons while retaining the
simplicity of the original Fermi gas.Comment: LaTex file with 15 .ps figure
Low temperature tunneling current enhancement in silicide/Si Schottky contacts with nanoscale barrier width
The low temperature electrical behavior of adjacent silicide/Si Schottky
contacts with or without dopant segregation is investigated. The electrical
characteristics are very well modeled by thermionic-field emission for
non-segregated contacts separated by micrometer-sized gaps. Still, an excess of
current occurs at low temperature for short contact separations or
dopant-segregated contacts when the voltage applied to the device is
sufficiently high. From two-dimensional self-consistent non-equilibrium Green's
function simulations, the dependence of the Schottky barrier profile on the
applied voltage, unaccounted for in usual thermionic-field emission models, is
found to be the source of this deviation
- …
