84 research outputs found

    Comprehensive Investigation of Solar-Based Hydrogen and Electricity Production in Iran

    No full text
    Hydrogen is a clean and environmentally friendly energy vector that can play an important role in meeting the world’s future energy needs. Therefore, a comprehensive study of the potential for hydrogen production from solar energy could greatly facilitate the transition to a hydrogen economy. Because by knowing the exact amount of potential for solar hydrogen production, the cost-effectiveness of its production can be compared with other methods of hydrogen production. Considering the above, it can be seen that so far no comprehensive study has been done on finding the exact potential of solar hydrogen production in different stations of Iran and finding the most suitable station. Therefore, in the present work, for the first time, using the HOMER and ArcGIS softwares, the technical-economic study of solar hydrogen production at home-scale was done. The results showed that Jask station with a levelized cost of energy equal to 0.172andannualproductionof83.8kgofhydrogenisthebeststationandDarabstationwithalevelizedcostofenergyequalto 0.172 and annual production of 83.8 kg of hydrogen is the best station and Darab station with a levelized cost of energy equal to 0.286 and annual production of 50.4 kg of hydrogen is the worst station. According to the results, other suitable stations were Bushehr and Deyr, and other unsuitable stations were Anzali and Khalkhal. Also, in 102 under study stations, 380 MW of solar electricity equivalent to 70.2 tons of hydrogen was produced annually. Based on the geographic information system map, it is clear that the southern half of Iran, especially the coasts of the Persian Gulf and the sea of Oman, is suitable for hydrogen production, and the northern, northeastern, northwestern, and one region in southern of Iran are unsuitable for hydrogen production. The authors of this article hope that the results of the present work will help the energy policymakers to create strategic frameworks and a roadmap for the production of solar hydrogen in Iran

    Investigation of Artery Wall Elasticity Effect on the Prediction of Atherosclerosis by Hemodynamic Factors

    No full text
    Atherosclerosis is a vascular disease in which some parts of the artery undergo stenosis due to the aggregation of fat. The causes and location of stenosis can be determined using fluid mechanics and parameters such as pressure, effective wall shear stress, and oscillatory shear index (OSI). The present study, for the first time, numerically investigates the pulsatile blood flow inside arteries with elastic and rigid walls in simple and double stenosis (80% stenosis) by using k-ω model and physiological pulse. The reason for applying the k-ω model in the present study was to provide more consistent results with clinical results to improve the accuracy in estimating atherosclerosis disease. The investigation of the time-mean wall shear stress indicated that for double stenosis, the difference between the results of the rigid and elastic artery assumptions is greater than the case of simple stenosis, so that this difference percent can be up to 2.5 times. In addition, the results showed that the pressure drop for the first stenosis is greater than the second stenosis, by 810 Pa (for solid artery) and 540 Pa (for elastic artery). The results also revealed that for simple stenosis, the length of the diseases prone zone in the elastic artery is 21% longer than the rigid one which this figure for double stenosis is calculated to be about 40%. Comparing the results of the simple stenosis with double, one affirmed that the artery wall thickness growth for case of double stenosis is greater than that of the single one

    Energetic-exergetic analysis of an air handling unit to reduce energy consumption by a novel creative idea

    Full text link
    Purpose This study aims to simulate the flow and heat transfer through an air handling unit to reduce its energy consumption by a novel creative idea of using an air-to-air heat exchanger. Design/methodology/approach To do this, both first and second laws of thermodynamics energy and exergy balance equations were solved numerically by an appropriate developed computer code. Findings Using the air-to-air heat exchanger in dry conditions decreases the cooling coil load by 0.9 per cent, whereas the reduction for humid conditions is 27 per cent. Similarly, using air-to-air heat exchanger leads to an increase in the first law of efficiency in dry and humid conditions by 0.9 per cent and 36.8 per cent, respectively. Originality/value The second law of efficiency increases by 1.55 per cent and 2.77 per cent in dry and humid conditions, respectively. In other words, the effect of using an air-to-air heat exchanger in humid conditions is more than that in dry conditions. </jats:sec
    corecore