1,096 research outputs found
Inserting Migrants into the Global Social Protection Floor
The social protection floor (SPF) is a global initiative led by the International Labour Organization (ILO) to provide social security to vulnerable groups. The SPF neglects the rapidly growing population of international migrants and focusses principally on citizens from lower-income countries. The SPF requires a method to evaluate the social protection gap that exists between citizens and non-citizens in countries that receive migrants in order to improve protections for all. The SPF Advisory Group must collaborate more closely with transit and receiving countries, middle- and high-income countries, and regional organizations to reduce the gaps in social protection between citizens and non-citizens
Reactivity and microstructure evolution of a CoNiCrAlY/Talc cermet prepared by spark plasma sintering
A mixture of CoNiCrAlY and talc powders is considered as a new candidate composition for abradable seal coating applications. Dense specimen having the composition of 1:20 weight ratio of talc with respect to CoNiCrAlY was prepared using the Spark Plasma Sintering (SPS) technique. The aim of the present article is to investigate the reactivity and microstructure evolution of the β/γ-CoNiCrAlY based cermet. The resulting microstructures were analysed and their compositions determined using standard analytical techniques such as SEM, TEM and X-ray diffraction. After fabrication, the bulk of the material is shown to contain a continuous oxide layer of MgAl2O4 at the periphery of metallic particles, resulting from the reaction between aluminium, which has diffused from the bulk of CoNiCrAlY grains, with magnesium and oxygen delivered during the high temperature decomposition of the talc phase. Thermodynamic calculations results are found to be consistent with the experimental observations. The oxidation behaviour at a high temperature of this cermet was also investigated. It was shown that at its external surface a continuous double layer is formed — one external film at the surface of the sample made of MgAl2O4 and the second one more internal in between the later and the cermet made of α-Al2O3. The oxide scale is protective with low oxidation kinetics typical of alpha alumina growth (kP = 1.8 10 − 7mg2 cm − 4 s − 1 at 1050 °C in flowing dry air)
Larue, J.-P. (2005). Baccalauréat : à qui profite la démocratisation ? Paris, France : L’Harmattan
Vinokur, A. (2007). Pouvoirs et financement en éducation : qui paye décide ? Paris, France : L’Harmattan
Predicting the onset of rafting of c 0 precipitates by channel deformation in a Ni superalloy
The growth or shrinkage, normal to 001, of the interfaces between the γ matrix and cuboidal γ' precipitates is examined for a Ni-base superalloy, by considering the force acting on the interfaces. The force is produced by the precipitate coherency misfit and the stress produced by plastic deformation in channels of the γ matrix. A simple expression, which directly addresses the origin of the surface force, is given. The plastic deformation within the initially active γ matrix channels exerts the force to cause rafting. The subsequent activation of other types of channels also promotes the rafting in the same direction as the first active channels, when the plastic strain of the former channels increases. These issues are also discussed in terms of analysis based on those dislocations caused by the precipitate misfit and those produced by the plastic deformation
Thermal barrier systems and multi-layered coatings fabricated by spark plasma sintering for the protection of Ni-base superalloys
Aeronautic gas turbine blades, vanes and combustion chambers are protected against high temperature oxidation and corrosion by single or multilayered coatings. These include environmental coatings, generally based on Pt-modified Ni aluminides or MCrAlY overlays (where M = Ni and/or Co), thermal barrier coating (TBC) systems including a ceramic thermally insulating layer, and abradable seals. The present work shows the ability of the Spark Plasma Sintering technique to rapidly develop new coatings compositions and microstructures. This technique allows combining powders and metallic foils on a superalloy substrate in order to obtain multilayered coatings in a single short production step. Fabrication of MCrAlY overlays with local Pt and/or Al enrichments is shown, as well as fabrication of coatings made of z-PtAl2, e-PtAl, α-AlNiPt2, martensitic and b−(Ni,Pt)Al or Pt-rich g/g’ phases, including their doping with reactive elements. The fabrication of a complete TBC system with a porous and adherent Yttria Stabilized Zirconia (YSZ) layer on a bond-coating is also demonstrated, as well as the fabrication of a CoNiCrAlY-based cermet coating for abradable seal application. Difficulties of fabrication are reviewed, such as Y segregation, risks of carburization, local over-heating, or difficulty to coat complex shaped parts. Solutions are given to overcome these difficulties
Dependence of Crystallite Formation and Preferential Backbone Orientations on the Side Chain Pattern in PBDTTPD Polymers
Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., “face-on” vs “edge-on”). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells
Structure of the calcium pyrophosphate monohydrate phase (Ca2P2O7·H2O): towards understanding the dehydration process in calcium pyrophosphate hydrates
Calcium pyrophosphate hydrate (CPP, Ca2P2O7·nH2O) and calcium orthophosphate compounds (including apatite, octacalcium phosphate etc.) are among the most prevalent pathological calcifications in joints. Even though only two dihydrated forms of CPP (CPPD) have been detected in vivo (monoclinic and triclinic CPPD), investigations of other hydrated forms such as tetrahydrated or amorphous CPP are relevant to a further understanding of the physicochemistry of those phases of biological interest. The synthesis of single crystals of calcium pyrophosphate monohydrate (CPPM; Ca2P2O7·H2O) by diffusion in silica gel at ambient temperature and the structural analysis of this phase are reported in this paper. Complementarily, data from synchrotron X-ray diffraction on a CPPM powder sample have been fitted to the crystal parameters. Finally, the relationship between the resolved structure for the CPPM phase and the structure of the tetrahydrated calcium pyrophosphate [beta] phase (CPPT-[beta]) is discussed
Knee extension strength in obese and nonobese male adolescents
The aim of the present study was to compare “absolute” and “relative” knee extension strength between obese and nonobese adolescents. Ten nonobese and 12 severely obese adolescent boys of similar chronological age, maturity status, and height were compared. Total body and regional soft tissue composition were determined using dual-energy X-ray absorptiometry (DXA). Knee extensors maximum voluntary contraction (MVC) torque was measured using an isometric dynamometer at a knee angle of 60° (0° is full extension). Absolute MVC torque was significantly higher in obese adolescents than in controls. However, although MVC torque expressed per unit of body mass was found to be significantly lower in obese adolescent boys, no significant difference in MVC torque was found between groups when normalized to fat-free mass. Conversely, when correcting for thigh lean mass and estimated thigh muscle mass, MVC torque was significantly higher in the obese group (17.9% and 22.2%, respectively; P <0.05). To conclude, our sample of obese adolescent boys had higher absolute and relative knee extension strength than our nonobese controls. However, further studies are required to ascertain whether or not relative strength, measured with more accurate in vivo methods such as magnetic resonance imaging, is higher in obese adolescents than in nonobese controls
- …
