7,986 research outputs found
Diamond electro-optomechanical resonators integrated in nanophotonic circuits
Diamond integrated photonic devices are promising candidates for emerging
applications in nanophotonics and quantum optics. Here we demonstrate active
modulation of diamond nanophotonic circuits by exploiting mechanical degrees of
freedom in free-standing diamond electro-optomechanical resonators. We obtain
high quality factors up to 9600, allowing us to read out the driven
nanomechanical response with integrated optical interferometers with high
sensitivity. We are able to excite higher order mechanical modes up to 115 MHz
and observe the nanomechanical response also under ambient conditions.Comment: 15 pages, 4 figure
Evaporative Cooling of a Guided Rubidium Atomic Beam
We report on our recent progress in the manipulation and cooling of a
magnetically guided, high flux beam of atoms. Typically
atoms per second propagate in a magnetic guide providing a
transverse gradient of 800 G/cm, with a temperature K, at an
initial velocity of 90 cm/s. The atoms are subsequently slowed down to cm/s using an upward slope. The relatively high collision rate (5 s)
allows us to start forced evaporative cooling of the beam, leading to a
reduction of the beam temperature by a factor of ~4, and a ten-fold increase of
the on-axis phase-space density.Comment: 10 pages, 8 figure
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
Unlike most established methods they rely on low-level input, for instance
calorimeter output. While their network architectures are vastly different,
their performance is comparatively similar. In general, we find that these new
approaches are extremely powerful and great fun.Comment: Yet another tagger included
Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant
The mean life of the positive muon has been measured to a precision of 11 ppm
using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which
was surrounded by a scintillator detector array. The result, tau_mu =
2.197013(24) us, is in excellent agreement with the previous world average. The
new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F =
1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of
the positive muon lifetime is needed to determine the nucleon pseudoscalar
coupling g_P.Comment: As published version (PRL, July 2007
Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision
We report a measurement of the positive muon lifetime to a precision of 1.0
parts per million (ppm); it is the most precise particle lifetime ever
measured. The experiment used a time-structured, low-energy muon beam and a
segmented plastic scintillator array to record more than 2 x 10^{12} decays.
Two different stopping target configurations were employed in independent
data-taking periods. The combined results give tau_{mu^+}(MuLan) =
2196980.3(2.2) ps, more than 15 times as precise as any previous experiment.
The muon lifetime gives the most precise value for the Fermi constant:
G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract
the mu^-p singlet capture rate, which determines the proton's weak induced
pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let
Core reconstruction in pseudopotential calculations
A new method is presented for obtaining all-electron results from a
pseudopotential calculation. This is achieved by carrying out a localised
calculation in the region of an atomic nucleus using the embedding potential
method of Inglesfield [J.Phys. C {\bf 14}, 3795 (1981)]. In this method the
core region is \emph{reconstructed}, and none of the simplifying approximations
(such as spherical symmetry of the charge density/potential or frozen core
electrons) that previous solutions to this problem have required are made. The
embedding method requires an accurate real space Green function, and an
analysis of the errors introduced in constructing this from a set of numerical
eigenstates is given. Results are presented for an all-electron reconstruction
of bulk aluminium, for both the charge density and the density of states.Comment: 14 pages, 5 figure
Large non-Gaussianity from two-component hybrid inflation
We study the generation of non-Gaussianity in models of hybrid inflation with
two inflaton fields, (2-brid inflation). We analyse the region in the parameter
and the initial condition space where a large non-Gaussianity may be generated
during slow-roll inflation which is generally characterised by a large f_NL,
tau_NL and a small g_NL. For certain parameter values we can satisfy
tau_NL>>f_NL^2. The bispectrum is of the local type but may have a significant
scale dependence. We show that the loop corrections to the power spectrum and
bispectrum are suppressed during inflation, if one assume that the fields
follow a classical background trajectory. We also include the effect of the
waterfall field, which can lead to a significant change in the observables
after the waterfall field is destabilised, depending on the couplings between
the waterfall and inflaton fields.Comment: 16 pages, 6 figures; v2: comments and references added, typos
corrected, matches published versio
Thin Film Transistors obtained by Hot-Wire CVD
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material
- …
